Из чего состоит подшипник

Содержание
  1. Содержание
  2. Основные типы подшипников [ править | править код ]
  3. Подшипники качения [ править | править код ]
  4. Классификация [ править | править код ]
  5. Механика [ править | править код ]
  6. Условное обозначение подшипников качения в СССР и России [ править | править код ]
  7. Подшипники скольжения [ править | править код ]
  8. Определение [ править | править код ]
  9. PV-фактор [ править | править код ]
  10. Классификация [ править | править код ]
  11. Структура
  12. Схемы опоры по их видам и описание
  13. Шариковые радиальные
  14. Шариковые упорные
  15. Упорно радиальные
  16. Строение и устройство опорного подшипника
  17. Группа с коническими роликами
  18. Двухрядные
  19. Роликовые опорные
  20. Самоустанавливающиеся подшипники (плавающие)
  21. Игольчатые
  22. Подшипник скольжения – из чего он состоит, его устройство
  23. Устройство вращения на основе газовой прослойки
  24. Магнитные
  25. Не вращающиеся механизмы скольжения
  26. Основные типы
  27. Подшипники скольжения
  28. Подшипники качения
  29. Шарикоподшипники
  30. Роликоподшипники
  31. Смазка
  32. Разновидности подшипников скольжения
  33. Классификация подшипников скольжения
  34. Стандарты подшипников скольжения
  35. Маркировка
  36. Классы точности подшипников
  37. Назначение подшипников качения
  38. Магнитные подшипники
  39. Где используются устройства скольжения
  40. Классификация подшипников качения
  41. Характеристики подшипников качения
  42. Каталог импортных подшипников FAG, INA, SKF, NSK, TIMKEN и др.

Подши́пник (от «под шип») — сборочный узел, являющийся частью опоры или упора и поддерживающий вал, ось или иную подвижную конструкцию с заданной жёсткостью. Фиксирует положение в пространстве, обеспечивает вращение, качение с наименьшим сопротивлением, воспринимает и передаёт нагрузку от подвижного узла на другие части конструкции [1] .

Опора с упорным подшипником называется подпятником.

Основные параметры подшипников:

  • Максимальная динамическая и статическая нагрузка (радиальная и осевая).
  • Максимальная скорость (оборотов в минуту для радиальных подшипников).
  • Посадочные размеры.
  • Класс точности подшипников.
  • Требования к смазке. [2]
  • Ресурс подшипника до появления признаков усталости, в оборотах.
  • Шумы подшипника
  • Вибрации подшипника

Нагружающие подшипник силы подразделяют на:

  • радиальную, действующую в направлении, перпендикулярном оси подшипника;
  • осевую, действующую в направлении, параллельном оси подшипника.

Содержание

Основные типы подшипников [ править | править код ]

По принципу работы все подшипники можно разделить на несколько типов:

  • подшипники качения;
  • подшипники скольжения;

К подшипникам скольжения также относят:

Основные типы, которые применяются в машиностроении, — это подшипники качения и подшипники скольжения.

Подшипники качения [ править | править код ]

Подшипники качения состоят из двух колец, тел качения (различной формы) и сепаратора (некоторые типы подшипников могут быть без сепаратора), отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба — дорожки качения, по которым при работе подшипника катятся тела качения.

Также существуют насыпные подшипники, состоящие из сепаратора и вставленных в него шариков (см. рис. ниже), которые можно вытаскивать.

Имеются подшипники качения, изготовленные без сепаратора. Такие подшипники имеют большее число тел качения и большую грузоподъёмность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

В подшипниках качения возникает преимущественно трение качения (имеются только небольшие потери на трение скольжения между сепаратором и телами качения), поэтому по сравнению с подшипниками скольжения снижаются потери энергии на трение и уменьшается износ. Закрытые подшипники качения (имеющие защитные крышки) практически не требуют обслуживания (замены смазки), открытые — чувствительны к попаданию инородных тел, что может привести к быстрому разрушению подшипника.

Классификация [ править | править код ]

Классификация подшипников качения осуществляется на основе следующих признаков:

  • По виду тел качения
  • Шариковые,
  • Роликовые (игольчатые, если ролики тонкие и длинные);
  • По типу воспринимаемой нагрузки
    • Радиальные (нагрузка вдоль оси вала не допускается).
    • Радиально-упорные, упорно-радиальные. Воспринимают нагрузки как вдоль, так и поперёк оси вала. Часто нагрузка вдоль оси только одного направления.
    • Упорные (нагрузка поперёк оси вала не допускается).
      • Шариковые винтовые передачи. Обеспечивают сопряжение винт-гайка через тела качения.
      • По числу рядов тел качения
        • Однорядные,
        • Двухрядные,
        • Многорядные;
        • Самоустанавливающиеся.
        • Несамоустанавливающиеся.
          • По материалу тел качений:
          • Полностью стальные;
          • Гибридные (стальные кольца, тела качения неметаллические. Как правило, керамические);

            Радиальный роликовый подшипник

            Упорный шариковый подшипник

            Упорный роликовый подшипник

            Радиально-упорный шариковый подшипник

            Радиально-упорный шариковый подшипник с четырёхточечным контактом

            Радиально-упорный роликовый подшипник (конический)

            Самоустанавливающийся двухрядный радиальный шариковый подшипник

            Самоустанавливающийся радиальный роликовый подшипник

            Самоустанавливающийся радиально-упорный роликовый подшипник

            Самоустанавливающийся двухрядный радиальный роликовый подшипник с бочкообразными роликами (сферический)

            Сепаратор с роликами игольчатого подшипника

            Шариковая винтовая передача

            Механика [ править | править код ]

            Подшипник представляет собой по существу планетарный механизм, в котором водилом является сепаратор, функции центральных колёс выполняют внутреннее и наружное кольца, а тела качения заменяют сателлиты.

            Частота вращения сепаратора или частота вращения шариков вокруг оси подшипника
            n c = n 1 2 ( 1 − D ω d m ) <displaystyle n_=<frac <1>><2>>left(1-<frac >>>
            ight)>

            где n1 — частота вращения внутреннего кольца радиального шарикоподшипника,
            Dω — диаметр шарика.
            dm = 0,5(D+d) — диаметр окружности, проходящей через оси всех тел качения (шариков или роликов).

            Частота вращения шарика относительно сепаратора
            n s p = n 1 2 ( d m D ω − D ω d m ) <displaystyle n_=<frac <1>><2>>left(<frac >>>-<frac >>>
            ight)>

            Частота вращения сепаратора при вращении наружного кольца
            n c ∗ = n 3 2 ( 1 + D ω d m ) <displaystyle n_=<frac <3>><2>>left(1+<frac >>>
            ight)>

            где n3 — частота вращения внешнего кольца радиального шарикоподшипника.

            Для радиально-упорного подшипника
            n c = n 1 2 ( 1 − D ω cos ⁡ α d m ) <displaystyle n_=<frac <1>><2>>left(1-<frac cos alpha >>>
            ight)>

            n s p = n 1 2 ( d m D ω − D ω cos 2 ⁡ α d m ) <displaystyle n_=<frac <1>><2>>left(<frac >>>-<frac cos ^<2>alpha >>>
            ight)>

            Из приведённых выше соотношений следует, что при вращении внутреннего кольца сепаратор вращается в ту же сторону. Частота вращения сепаратора зависит от диаметра Dω шариков при неизменном dm: она возрастает при уменьшении Dω и уменьшается при увеличении Dω.

            В связи с этим разноразмерность шариков в комплекте подшипника является причиной повышенного износа и выхода из строя сепаратора и подшипника в целом.

            При вращении тел качения вокруг оси подшипника на каждое из них действует нагружающая дополнительно дорожку качения наружного кольца центробежная сила

            F c = 0 , 5 m d m ω c 2 <displaystyle F_=0,5md_omega _^<2>> ,

            где m — масса тела качения,
            ωс — угловая скорость сепаратора.

            Центробежные силы вызывают перегрузку подшипника при работе на повышенной частоте вращения, повышенное тепловыделение (перегрев подшипника) и ускоренное изнашивание сепаратора. Всё это сокращает срок службы подшипника.

            В упорном подшипнике, кроме центробежных сил, на шарики действует обусловленный изменением направления оси вращения шариков в пространстве гироскопический момент

            M r = J ω c ω s p <displaystyle M_=Jomega _omega _>

            Гироскопический момент будет действовать на шарики и во вращающемся радиально-упорном шарикоподшипнике при действии осевой нагрузки

            M r = J ω c ω s p sin ⁡ α <displaystyle M_=Jomega _omega _sin alpha >

            где J = ρ ⋅ π ⋅ D ω 5 / 60 <displaystyle J=
            ho cdot pi cdot D_<omega >^<5>/60> — полярный момент инерции массы шарика;
            ρ — плотность материала шарика;
            ωsp и ωс — соответственно, угловая скорость шарика при вращении вокруг своей оси и вокруг оси вала (угловая скорость сепаратора).

            Под действием гироскопического момента каждый шарик получает дополнительное вращение вокруг оси, перпендикулярной плоскости, образованной векторами угловых скоростей шарика и сепаратора. Такое вращение сопровождается изнашиванием поверхностей качения, и для предотвращения вращения подшипник следует нагружать такой осевой силой, чтобы соблюдать условие T f = M r <displaystyle T_=M_> , где Tf — момент сил трения от осевой нагрузки на площадках контакта шариков с кольцами.

            Условное обозначение подшипников качения в СССР и России [ править | править код ]

            Советская и российская маркировка подшипников состоит из условного обозначения и стандартизована в соответствии ГОСТ 3189-89 и условного обозначения завода-изготовителя.

            Основное условное обозначение подшипника состоит из семи цифр основного условного обозначения (при нулевых значениях этих признаков оно может сокращаться до 2 знаков) и дополнительного обозначения, которое располагается слева и справа от основного. При этом дополнительное обозначение, расположенное слева от основного, всегда отделено знаком тире (—), а дополнительное обозначение, расположенное справа, всегда начинается с какой-либо буквы. Чтение знаков основного и дополнительного обозначения производится справа налево.

            Подшипники скольжения [ править | править код ]

            Определение [ править | править код ]

            Подшипник скольжения — опора или направляющая механизма или машины, в которой трение происходит при скольжении сопряжённых поверхностей. Радиальный подшипник скольжения представляет собой корпус, имеющий цилиндрическое отверстие, в которое вставляется рабочий элемент — вкладыш, или втулка из антифрикционного материала и смазывающее устройство. Между валом и отверстием втулки подшипника имеется зазор, заполненный смазочным материалом, который позволяет свободно вращаться валу. Расчёт зазора подшипника, работающего в режиме разделения поверхностей трения смазочным слоем, производится на основе гидродинамической теории смазки.

            При расчёте определяются: минимальная толщина смазочного слоя (измеряемая в мкм), давления в смазочном слое, температура и расход смазочных материалов. В зависимости от конструкции, окружной скорости цапфы, условий эксплуатации трение скольжения бывает сухим, граничным, жидкостным и газодинамическим. Однако даже подшипники с жидкостным трением при пуске проходят этап с граничным трением.

            Читайте также:  Расчет короба для сабвуфера по динамику

            Смазка является одним из основных условий надёжной работы подшипника и обеспечивает низкое трение, разделение подвижных частей, теплоотвод, защиту от вредного воздействия окружающей среды.

            Смазка может быть:

            • жидкой (минеральные и синтетические масла, вода для неметаллических подшипников),
            • пластичной (на основе литиевого мыла и кальция сульфоната и др.),
            • твёрдой (графит, дисульфид молибдена и др.) и
            • газообразной (различные инертные газы, азот и др.).

            Наилучшие эксплуатационные свойства показывают пористые самосмазывающиеся подшипники, изготовленные методом порошковой металлургии. При работе пористый самосмазывающийся подшипник, пропитанный маслом, нагревается и выделяет смазку из пор на рабочую скользящую поверхность, а в состоянии покоя остывает и впитывает смазку обратно в поры.

            PV-фактор [ править | править код ]

            PV-фактор — основная характеристика (критерий) оценки работоспособности подшипника скольжения. Является произведением удельной нагрузки P (МПа) на окружную скорость V (м/с). Определяется для каждого антифрикционного материала экспериментально при испытаниях или в процессе эксплуатации. Многие данные по соблюдению оптимального PV-фактора даны в справочниках

            Классификация [ править | править код ]

            В основу классификации положен анализ режимов работы подшипников по диаграмме Герси-Штрибека.

            Подшипники скольжения разделяют:

            • в зависимости от формы подшипникового отверстия:
            • одно- или многоповерхностные,
            • со смещением поверхностей (по направлению вращения) или без (для сохранения возможности обратного вращения),
            • со смещением или без смещения центра (для конечной установки валов после монтажа);
          • по направлению восприятия нагрузки:
            • радиальные
            • осевые (упорные, подпятники),
            • радиально-упорные;
            • по конструкции:
              • неразъёмные (втулочные; в основном, для I-1),
              • разъёмные (состоящие из корпуса и крышки; в основном, для всех, кроме I-1),
              • встроенные (рамовые, составляющие одно целое с картером, рамой или станиной машины);
              • по количеству масляных клапанов:
                • с одним клапаном,
                • с несколькими клапанами;
                • по возможности регулирования:
                  • нерегулируемые,
                  • регулируемые.
                  • Ниже представлена таблица групп и классов подшипников скольжения (примеры обозначения: I-1, II-5).

                    В нашей статье мы подробно расскажем, как устроены подшипники скольжения и качения (шариковые и роликовые). Знание структуры подшипникого узла и его деталей поможет не ошибиться при монтаже или демонтаже, ремонте и замене важных компонентов.

                    Структура

                    Когда человечество столкнулось с проблемой перетирания осей от долгой эксплуатации, то «пытливые» умы предков начали работать над этой задачей. Первым прототипом конструкции, облегчающей глоссирование, стала втулка из материала с малым трением, набитая смазкой. Сегодня принципиальное строение не изменилась. Только стали применять более современные материалы, такие как: керамика, бронзовые сплавы, полимеры.

                    Для облегчения движения вала в 1780 году в Великобритании впервые были применены шары. Это был аналог опорного шарикового механизма, который сохранился в первозданном виде до сегодняшнего дня.

                    Схемы опоры по их видам и описание

                    В промышленности и быту используется огромное разнообразие узлов, которые снижают трение при вращении и продольном глоссировании.

                    Далее мы приведем чертежи устройства и покажем, из каких деталей состоят подшипники качения и скольжения, его составные части.

                    Шариковые радиальные

                    Эти приспособления являются наиболее распространенными видом, состоящие из внешней и внутренней обоймы с технологической выемкой. В пространство между ними вставлены металлические или керамические шарики, закрепленные сепаратором.

                    Эти изделия бывают открытыми или закрытыми (между обоймами ставится шайба, предотвращающая попадания грязи внутрь и вытекание смазки). Промышленность изготавливает все типоразмеры в разном исполнении с одной или двумя защитными шайбами, с мембранами для предотвращения попадания грязи. В таких изделиях на заводах заранее делают канавку для фиксации с помощью кольца. Если требуются элементы качения с очень длительным сроком эксплуатации, то создаются модели, имеющие усиленные корпуса большей ширины и толщины.

                    Сепаратор может быть изготовлен:

                    • из бронзы (этот материал имеет низкий коэффициент трения, но дорогой по стоимости);
                    • из металла (более распространенный вариант);
                    • из пластика (резко снижает шумность, но требует постоянной активной смазки, используется в коробках передач автотранспорта).

                    Выпускаются детали с двумя рядами качения.

                    Этот механизм выдерживает в два раза большую нагрузку и способен поддерживать ориентацию оси. В некоторых случаях, одним таким узлом можно заменить группу из двух однорядных.

                    Шариковые упорные

                    Они предназначены для ограничения движения вала вдоль оси вращения. Обычно состоят из верхней и нижней шайб с технологическими канавками и сепаратора с шариками.

                    Эти приспособления бывают однорядными и двухрядными, как с последовательным, так и с радиальным расположением элементов качения. Для упрощения монтажных работ выпускаются изделия с дополнительной платформой, обеспечивающей равномерное усилие на опору.

                    Упорно радиальные

                    В случае, когда требуется не только достичь легкого вращения, но и ограничить перемещение стержня вдоль оси, используются такие установки.

                    • Однорядные. Они обеспечивают вращение и продольную опору в одном направлении.

                    • Двухрядные. Позволяют зафиксировать вал в нужном положении и сохранять позицию соосности относительно обоймы. Например, они широко употребляются в ступицах колес современных легковых машин.

                    • Разборные. Имеют возможность дополнительного смазывания. Для правильного функционирования необходима жесткая фиксация нижних колец.

                    • Неразборные. Они поставляются с завода и не требуют обслуживания.

                    Этот вид применяется для узлов с большой нагрузкой. Существуют следующие типы:

                    • С одним рядом. Они подразделяются на: с канавкой в наружнем кольце; внутреннем; в двух сразу. От этого зависит будет ли иметь стержень осевое смещение.

                    • С двумя рядами, он требуется в случаях больших усилий, передаваемых через вал. Такая конструкция позволяет фиксацию оси в нужном положении.

                    Строение и устройство опорного подшипника

                    Деталь необходима для ограничения продольного движения оси вращения. Она является аналогом упорного шарикового приспособления.

                    Группа с коническими роликами

                    При необходимости компенсировать радиальные и осевые нагрузки, используются узлы с элементами качения в форме конуса. Наиболее распространен вид – это однорядный.

                    Эта запчасть является разборной и имеет функцию регулировки после длительной эксплуатации. В большинстве случаев они ставятся в паре. Все легковые автомобили в прошлом и основная масса грузовиков сейчас имеют такое приспособление в ступице колеса. Также он широко распространен в сельскохозяйственной технике, где на середины прикладываются большие усилия, при этом обороты не высокие. Этот узел постепенно вытесняется из использования, так как требует постоянного обслуживания.

                    Двухрядные

                    Вместо использования двух деталей можно использовать одну. При этом сохраняется возможность регулировки и не теряется функция контроля осевого смещения. В косозубых передачах такая конструкция обеспечивает постоянное совпадение шестеренок.

                    Такой блок незаменим в тяжелой промышленной и горнодобывающей технике, в железнодорожном транспорте.

                    Роликовые опорные

                    При повышенном усилии, направленном вдоль середины, требуется установка подшипников несколько другого строения. Они бывают с конусными, со сферическими и цилиндрическими звеньями качения.

                    Сепаратор из стали

                    В механизмах, где необходима самоцентация опорного элемента, используются детали со сферическими роликами. Они выдерживают большие нагрузки, высокие обороты вращательного движения, не критичны к соосности стержня и к месту посадки. Применяются в устройствах с большим осевым давлением, таких как: ветрогенератор, экструдер, поворотные приборы тяжелой промышленности, металлургическое оборудование.

                    Самоустанавливающиеся подшипники (плавающие)

                    В производстве требуется добиться устойчивого, длительного вращения валов, которые невозможно или нецелесообразно точно отцентрировать. Например, привода на сельскохозяйственной технике, на поливочной системе. В этом случае употребляются узлы скольжения, автоматически выбирающие плоскость поворота.

                    Общей особенностью этих блоков является обработка одной из поверхностей в виде шара.

                    Как видно по схеме, изделие имеет возможность свободно вращаться при несовпадении координат посадки и опоры. У этого вида часто используется дополнительный компонент – клиновидный замок для фиксации на валу.

                    Эта иллюстрация хорошо показывает главное преимущество этого типа. Он стабильно работает при осевом смещении и при несовпадении плоскостей.

                    Самоустанавливающиеся механизмы подразделяются на два основных класса:

                    • Шариковые:
                    1. однорядные;
                    2. двухрядные;
                    3. со степенью свободы во внешней обойме;
                    4. во внутренней.

                    Такое приспособление легко монтируется, но выдерживает не очень высокие перегрузки.

                    • Роликовые:
                    1. С одним рядом элементов качения. Наиболее простой и самый распространенный вариант.
                    2. С двумя рядами. Эта деталь эксплуатируется при большом давлении.
                    3. Со сферической поверхностью на внешней обойме.
                    4. На внутренней обойме.
                    5. С возможностью смещения роликов в двух плоскостях. Она позволяет достигнуть сильное отклонения вала от опоры.

                    Такой класс применяется в конструкциях, где невозможно или нецелесообразно достичь высокой степени совмещения узлов. Также в случаях, когда точки посадки не могут быть неподвижными. Одним из недостатков такого соединения является трудность удержать смазку внутри детали.

                    Игольчатые

                    Элемент качения в форме вытянутого продолговатого цилиндра позволяет резко сократить разрыв между внешним и внутренним диаметрами. Размер устройства скольжения становится заметно меньше. Это качество нашло применение в конструкциях, где невозможно поставить классические шариковые или роликовые опоры из-за слишком больших габаритов. Они используются в коробках передач для легковых и грузовых автомобилей. На этой основе сделаны крестовины карданного вала.

                    Читайте также:  Как выгодно продать битый автомобиль

                    Вместо внешней или внутренней обоймы в данной конструкции часто используются посадочное место с высоким качеством обработки. Что позволяет сэкономить несколько миллиметров необходимого пространства. Существую модели игольчатого прибора без сепаратора, рассчитанные на небольшие угловые скорости или движение качания (крестовины карданной передачи).

                    Подшипник скольжения – из чего он состоит, его устройство

                    С этим механизмом мы сталкиваемся на каждом шагу. В любом аппарате, имеющим подвижность, можно найти такую деталь: дверные петли, втулки колес детской коляски, скользящие прокладки в бытовой технике, в стартере автомобиля.

                    Конструкция состоит из корпуса, скользящего слоя и вращающихся элементов. Инженеры стараются добиться минимального сопротивления между поверхностями, поэтому используют материалы с малым коэффициентом трения (бронзовые сплавы, чугун, полимеры, керамику). Следующим шагом по облегчению глоссирования является введение дополнительного слоя, создающего просвет между плоскостями. Для этого применяются разные виды смазок, таких как: специализированное масло, литол, графит, вода для керамики, инертные газы, эмульсии с литиевым мылом и сульфатом кальция.

                    Приборы скольжения разделяются на два основных вида: радиальные и упорные. Например, в соединении шатуна и коленчатого вала используются вкладыши, обеспечивающие вращательное движение. Между блоком и кривошипом стоят прокладки, ограничивающие осевое смещение.

                    • Одно и много поверхностные. Это зависит от количества втулок, скользящих относительно друг друга.
                    • С возможность регулировки. При выработке за счет смещения вкладыша уменьшается появившийся зазор.
                    • Гидростатические с принудительной смазкой. Здесь необходима постоянная подача смазочного материала под большим давлением.
                    • Гидродинамические, где элемент глоссирования вовлекается между плоскостями за счет собственного вращения.
                    • Встроенные. Когда одна или обе обоймы являются конструктивной частью механизма, что делает невозможным замену индивидуальной детали.
                    • Разборные. В этом случае не требуется ремонт всего прибора, достаточно заменить только запчасть.

                    Подробнее рассмотрим разновидность с жидкой смазкой.

                    При совершении оборотов жидкость вовлекается в пространство между трущимися поверхностями, это создаёт зазор и резко снижает сопротивление. Если нет возvожности поддержания постоянного уровня жидкости, то целесообразно использование системы с искусственным нагнетанием смазки под давлением.

                    В современных изделиях используется не только масло, но и стандартные вещества. Например, в керамических подшипниках бытовых циркуляционных насосах применяется вода.

                    Устройство вращения на основе газовой прослойки

                    Одним из недостатков такой системы является низкое усилие на ось. При этом фактически полное отсутствие трения в стандартных режимах работы делают ее незаменимой в решении многих инженерных задач. У такого типа плохие характеристики по сопротивлению в режиме пуска и остановки.

                    Магнитные

                    Самым новым видом приспособления, снижающим трение, представляют механизмы на основе физического принципа отталкивания магнитов с разной полярностью. С развитием науки появилась возможность подвесить ось между соленоидами так, чтобы она не имела контакта с оправкой.

                    Главным преимуществом является полное отсутствие препятствия для вращения. При этом практически не выделяется тепло. Значит решается проблема отведения лишнего нагрева. При помощи сильных магнитных полей возможно достичь больших рабочих нагрузок.

                    Важный недостаток таких комплексов: сложность конструкции; обязательное наличие дополнительного источника энергии, которой требуется больше при увеличении силы воздействия.

                    Не вращающиеся механизмы скольжения

                    В стандартном понимании это деталь между корпусом и валом. Требуется достичь минимального сопротивления при продольном движении. Аппараты,обеспечивающие такую функцию, называются так же. Они делятся на скольжение и качение. Например, в современной мебели выдвижные ящики оборудованы полосками, элементы которых сделаны из шариков. В принтерах, сканерах, в жестком диске компьютера используют устройство, позволяющее равномерно и беспрепятственно двигаться по направляющим с высокой степенью обработки.

                    Возникает необходимость многократного использования резьбового соединения. Чтобы избежать истирания выпускаются продольно-радиальные механизмы. Они являются аналогом винтового привода с использованием шариков для снижения трения и энергозатрат.

                    В нашей статье мы привели часть примеров и схемы, рассказали, из чего состоит шариковый, роликовый, игольчатый и подшипник скольжения. Разнообразие данных изделий вы можете посмотреть на сайте компании «Подшипник.моби», которая реализует большой ассортимент изделий, продукции от лучших отечественных и зарубежных брендов.

                    Подшипники — одно из ключевых изобретений, которое определило путь развития промышленности. Самый простой подшипник состоит из двух колец, вставленных одно в другое и предназначенное для поддержания и направления вращающегося вала.

                    Основные типы

                    Все подшипники могут быть разделены на две основные группы – подшипники качения и скольжения. Конструкция первых состоит из

                    • двух колец – внешнего и внутреннего;
                    • шариков;
                    • сепаратора, в котором установлены шарики.
                    • Подшипники скольжения имеют следующую конструкцию:
                    • внешняя обойма;
                    • внутренняя обойма, выполненная из материала с низким коэффициентом трения, например, тефлон (фторопласт).

                    Задача, которую призваны решать подшипники любого типа – это снижение трения между вращающимся и стационарными узлами агрегата. Это необходимо для снижения потерь энергии, нагрева и износа деталей, вызываемыми силой трения.

                    Подшипники скольжения

                    Сферические подшипники скольжения

                    Этот узел обычно выполняют в виде массивной опоры, изготовленной из металла. В ней проделывают отверстие, куда вставляют втулку или вкладыш, выполненный из материала с низким коэффициентом трения.
                    Для повышения эффективности работы этого узла и снижения трения в него вводят жидкую или плотную смазку. Это приводит к тому, что вал отделяется от втулки пленкой маслянистой жидкости. Эксплуатационные параметры подшипника скольжения зависят от следующих параметров:

                    1. Размера элементов, входящих в этот узел.
                    2. Скоростью вращения вала и размера нагрузок, приходящихся на него.
                    3. Густотой смазки.

                    Для обеспечения смазывания подшипника можно использовать любую вязкую жидкость – масло, керосин, эмульсии. В некоторых моделях подшипников скольжения для смазки применяют газы. Кроме, перечисленных материалов применяют и твердые, иногда их называют консистентные, смазки.

                    В некоторых конструкциях подшипников предусмотрена принудительная система смазки.

                    Подшипники качения

                    Внешний вид подшипника качения

                    В подшипниках этого типа трение скольжение подменяется трением качения. Благодаря такому решению происходит существенное снижение трения и износа.
                    Подшипники качения имеют разнообразные конструкции и размеры. В качестве тел вращения могут быть использованы шарики, ролики, иголки.

                    Шарикоподшипники

                    Шарикоподшипники являются самым распространенным типом подшипников. Он состоит из двух колец, между которыми устанавливают сепаратор с предустановленными шариками определенного размера. Шарики перемещаются по канавкам, которые, при изготовлении тщательно шлифуют. Ведь для полноценной работы подшипника необходимо, чтобы шарики не проскальзывали, и при этом у них была существенная площадь опоры.
                    Сепаратор, в который устанавливают шарики, обеспечивает их точное положение и исключает какой-либо контакт между ними. Производители выпускают изделия, которые укомплектованы двухрядными сепараторами.

                    Подшипники этого класса применяют при довольно небольших радиальных нагрузках и большом количестве оборотов рабочего вала.

                    Роликоподшипники

                    В подшипниках этого класса в качестве тел вращения применяют ролики различной формы. Они могут иметь форму цилиндров, усеченных конусов и пр. Производители освоили выпуск широкой номенклатуры роликовых подшипников с разными размерами колец и тел вращения.
                    Конический роликоподшипник используют для работы при наличии разнонаправленных нагрузках (осевой и радиальной) и больших оборотах на валу. Конструктивно роликовый подшипник похож на шариковый. Он также состоит из двух колец, сепаратора и роликов. Размеры роликовых подшипников определены в ряде стандартов, которые имеют силу в нашей стране. Например, ГОСТ 8328-75 определяет конструкцию, маркировку и размеры подшипников с короткими роликами. А ГОСТ 4657-82 регламентирует размеры и конструкцию игольчатых подшипников. То есть на каждый вид подшипников существует свой ГОСТ.

                    В этих нормативных документах приведены таблицы размеров подшипников, которыми должны руководствоваться конструкторы, при проектировании таких узлов.

                    Кстати, для облегчения жизни проектировщиков разработаны и успешно применяются справочники подшипников, в которых изложены принципы расчетов подшипниковых узлов, указаны размеры самих изделий и сопровождающих деталей, например, размеры заглушек.

                    Смазка

                    Эксплуатационный срок работы подшипников определяется износом тел качения и дорожек, расположенных в кольцах. Для продления срока службы подшипников применяют смазку, она может быть жидкой, например, в коробках передач станочного оборудования, или консистентной (твердой).

                    Кроме износа деталей подшипника, не последнюю роль играет и рабочая температура в узле. Вследствие нее может происходить неравномерная тепловая деформация. Это может привести к повышению частоты проскальзывания, и снижается твердость материала, из которого они изготовлены.

                    Производители выпускают подшипники с закрытыми сепараторами. В такие изделия еще на стадии производства закладывают твердую смазку, которая гарантировано проработает весь ресурс.

                    Разновидности подшипников скольжения

                    Всего размеры и основные характеристики подшипников скольжения, изложены в соответствующих ГОСТ. Всего их насчитывается порядка шести десятков. Например, ГОСТ 11607-82 нормирует требования к разъемным корпусам подшипников скольжения, а ГОСТ 25105-82, предъявляет требования к вкладышам, которые устанавливают в корпуса подшипников скольжения.

                    Читайте также:  Как собрать двигатель ока

                    Классификация подшипников скольжения

                    Изделия этого типа можно разделить на следующие основные типы:

                    1. Одно- и многоповерхностные.
                    2. Со смещением поверхностей.
                    3. Радиальные.
                    4. Осевые.
                    5. Радиально-упорные.

                    Кроме того, подшипники можно различать по конструкции:

                    1. Неразъемные, их называют втулочными.
                    2. Разъемные, они состоят из двух деталей основного корпуса и крышки к нему.
                    3. Встроенные, по своей конструкции, они составляют единое целое с корпусом механизма.

                    Нельзя забывать и о количестве точек подачи масла. Существуют подшипники с одним и несколькими клапанами. Кроме, приведенных классов можно назвать еще один – по возможности регулирований подшипника.

                    Конструкция подшипников скольжения не отличается сложностью. В состав конструкции могут входить два кольца. Одно из них (внутреннее) вращается в процессе работы. Вместо, тел вращения в устройствах этого типа применяют втулки, изготовленные из антифрикционных материалов. Для повышения эффективной работы в подшипники закачивают смазочные материалы.

                    Существуют два типа подшипников скольжения — гидростатические и гидродинамические. В изделиях первого типа смазка подается от масляного насоса. Вторые в этом плане удобнее, они сами могут выступать в роли насоса. Смазка будет поступать в них за счет разности давления между его компонентами.

                    Подшипники скольжения могут иметь, сферическое, упорное и линейное исполнения. Первые подшипники применяют в тех узлах, где преобладают низкие скорости вращения вала. Главное достоинство такого исполнения подшипников – это возможность передавать вращение даже при значительных перекосах валов.

                    Подшипники упорного исполнения применяют для работы там, где преобладают поперечные усилия. Довольно часто их монтируют в турбинах и паровых машинах.

                    Подшипники линейного исполнения исполняют роль направляющих. Кстати, их особенностью можно назвать их бесперебойную работу даже при постояннодействующих радиальных усилиях.

                    Подшипник линейного исполнения

                    Многолетняя, если не многовековая практика использования подшипников скольжения позволяет сделать выводы о достоинствах и недостатках этих конструкций.

                    • изделия этого класса обеспечивают надежную работу в условиях высоких скоростей вращения вала;
                    • обеспечение серьезных ударных и вибрационных усилий;
                    • довольно небольшие размеры;
                    • подшипники этого типа допустимо устанавливать в устройствах работающие в воде;
                    • некоторые модели позволяют выполнять настройку зазора и, таким образом, гарантируют точность установки оси вала.

                    Между тем, подшипникам скольжения присущи и определенные недостатки.

                    • в процессе эксплуатации необходимо постоянно контролировать уровень смазки;
                    • при недостаточной смазке и запуске возникает дополнительная сила трения;
                    • более низкий в сравнении с другими классами подшипников КПД;
                    • при производстве таких изделий применяют довольно дорогие материалы;
                    • при работе, подшипники этого класса могут генерировать излишний шум.

                    Стандарты подшипников скольжения

                    Одно из отличий подшипников от других типов деталей, применяемых в промышленности – это то, что они все стандартизированы. Выше было отмечено что на продукцию этого класса действует 60 ГОСТ, и это не считая ТУ и другой нормативной документации.
                    ГОСТ не только нормирует конструкцию и размеры подшипников, но и порядок их обозначения на чертежах, в спецификациях и другой рабочей документации.

                    Кроме того, ГОСТ на технические условия подшипников регламентирует параметры допусков и посадок, которые обязаны соблюдать производители.

                    Маркировка

                    Маркировка подшипников – это параметры, которые показывают рабочие диаметры изделия (внутренний и внешний), конструктивные особенности. Все эти данные закодированы в наборе цифр и буквенных символов. Порядок кодировки, детальная расшифровка регламентирована в ГОСТах на подшипниковую продукцию. Так, кодировка шариковых и роликовых подшипников однорядных приведена в ГОСТ 3189-89.

                    В закодированном наименовании подшипника содержатся следующие данные:

                    • серия ширины;
                    • исполнение;
                    • тип изделия;
                    • группа диаметров;
                    • посадочный диаметр.

                    Кстати, важно понимать, что на территории нашей страны применяют две системы обозначения подшипников – ГОСТ и ISO.

                    Пример расшифровки маркировки на подшипниках

                    Маркировка может быть нанесена на одно из колец. Если подшипник закрытого типа то маркировку наносят на уплотнение или защитном кольце.

                    Классы точности подшипников

                    Класс точности подшипника – это показатель, который характеризует максимальные отклонения значения размеров подшипника от номинала.

                    В некоторых устройствах при выборе подшипника потребитель руководствуется ценой на него, а остальные параметры для него не так критичны. В некоторых других случаях потребитель выбирает подшипник исходя из предельной скорости вращения, при которой не будут, проявляются такие явления, как вибрация и пр. Такие довольно жесткие условия предъявляются к изделиям, работающим на транспорте, станочным узлам, робототехнических комплексов.

                    В машиностроении существует зависимость между точностью обработки и ее стоимостью. То есть, чем точнее деталь, тем больше ее конечная цена.

                    Разделение подшипников по точности позволяет подобрать такое изделие, которое будет отвечать требованиям, которые предъявляет проектировщик и в то же время с приемлемой для потребителя ценой.

                    Класс точности описывает точность производства изделий. Для регулировки этого параметры существуют нормативы, определенные в ГОСТ и ISO. В них определены допуски на все размеры – диаметры, ширину, фаски и пр.

                    Назначение подшипников качения

                    Подшипники качения предназначены для поддержки вращающихся валов. Они нашли свое применение в машинах, разного типа, например, в подъемно-транспортных устройствах, технике, применяемой в сельском хозяйстве, судовых двигателях.

                    Магнитные подшипники

                    Магнитные подшипники, которые все чаще применяют в различных машинах и механизмах работает на основании принципа магнитной левитации. В результате реализации этого принципа в подшипниковой опоре отсутствует контакт между валом и корпусом подшипника. Существуют активное исполнение и пассивное.

                    Активные изделия уже в массовом производстве. Пассивные, пока еще находятся на стадии разработки. В них, для получения постоянного магнитного поля применяют постоянные магниты типа NdFeB.

                    Использование магнитных подшипников предоставляет потребителю следующие преимущества:

                    • высокая износостойкость подшипникового узла;
                    • применение таких изделий, возможно, в агрессивных средах в большом диапазоне внешней температуры.

                    Бесконтактный магнитный подшипник

                    В то же время использование таких узлов влечет за собой некоторые сложности, в частности:

                    В случае пропадания магнитного поля, механизм неизбежно понесет повреждения. Поэтому для бесперебойной и безаварийной работы проектировщики применяют так называемые страховые подшипники. Как правило, в качестве страховочных применяют подшипники качения. Но они в состоянии выдержать несколько отказов системы, после этого требуется их замена, так будут изменены их размеры.

                    Создание постояннодействующего, а главное, устойчивого, магнитного поля сопряжено с созданием больших и сложных систем управления. Такие комплексы вызывают сложности с ремонтом и обслуживанием подшипниковых узлов.

                    Излишнее тепловыделение. Оно обусловлено тем, что обмотка нагревается в результате прохождения через нее электрического тока, в некоторых случаях, такой нагрев недопустим и поэтому приходится устанавливать системы охлаждения, что, разумеется, приводит к усложнению и удорожанию конструкции.

                    Где используются устройства скольжения

                    На самом деле сложно найти механизм, в котором не установлены подшипники скольжения. Даже на атомных подводных лодках, на подшипниках этого типа устанавливают гребные валы. Подшипники скольжения нашли широкое применение в станкостроении. В частности, в них устанавливают валы, по которым перемещается суппорт, резцедержатель и другие составные части станка.

                    Классификация подшипников качения

                    К подшипникам качения относят:

                    • шариковые;
                    • роликовые,
                    • упорные и многие другие.

                    Все они характеризуются высокими параметрами износостойкости и возможностью работы в условиях разнонаправленных нагрузок – осевых и радиальных.

                    Характеристики подшипников качения

                    К основным характеристикам подшипников качения можно отнести следующие:

                    Угловая скорость, подшипники качения могут показывать высокие значении этой скорости, особенно если сепараторы выполнены из цветного металла или полимеров.

                    Перекос вала. Допустимо то, что перекос может достигать от 15’ до 30’. Кроме того, подшипники качения способны воспринимать небольшие осевые усилия. Она не должна превышать 70% от неиспользуемой радиальной грузоподъемности.

                    Подшипники качения показывают минимальные потери на трение.

                    Каталог импортных подшипников FAG, INA, SKF, NSK, TIMKEN и др.

                    В мировой экономике подшипниковая отрасль занимает отдельное место, во много это обусловлено значимостью продукции ей выпускаемой.

                    В нашей стране такую продукцию выпускают на специализированных подшипниковых заводах. Но, в последнее время существенно увеличен импорт подшипников из рубежа. Их поставляют из разных стран мира – США, КНР, Германии и пр.

                    Для ознакомления с номенклатурой поставляемой продукции достаточно ознакомиться с каталогами подшипников, которые предлагают потребителям зарубежные производители — FAG, INA, SKF, NSK, TIMKEN и многие другие. Достаточно одного взгляда и можно понять всю величину номенклатуры предлагаемых подшипников.

                    Но при заказе импортной продукции необходимо понимать, что подшипники, поступающие из-за границы, должны соответствовать требованиям наших нормативов и иметь документы, подтверждающие их качество и безопасность в эксплуатации. Подшипники очень часто поделывают. Рекомендуем покупать подшипники только у авторизированных поставщиков.

                    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

                    Оцените статью
                    Добавить комментарий

                    Adblock
                    detector