Эффективные показатели работы двигателя

Эффективные показатели работы двигателя: среднее эффективное давление, эффективная мощность, механический КПД и эффективный удельный расход топлива.

Среднее эффективное давление

Среднее эффективное давление ре — условное постоянное давление в цилиндрах двигателя, при котором работа, производимая в них за один такт, равна эффективной работе за цикл. Оно, так же как и среднее индикаторное давление, — мера удельной работы. Единица измерения: МПа или Дж/л.

Среднее эффективное давление можно представить как отношение эффективной работы Le двигателя за один цикл к рабочему объему цилиндра Vh:

Это давление можно также представить как разность между средним индикаторным давлением рi — и средним давлением механических потерь рм, т.е.

При работе автомобильных двигателей на номинальном режиме значения ре находятся в следующих пределах: для четырехтактных карбюраторных двигателей 0,6.1,1 МПа; для четырехтактных дизелей без наддува 0,55.0,85 МПа; с наддувом до 2 МПа; для газовых двигателей 0,5.0,75 МПа; для двухтактных высокооборотных дизелей 0,4.0,75 МПа.

Эффективная мощность Ne — это мощность на коленчатом валу двигателя, передаваемая трансмиссии. Эффективная мощность меньше индикаторной на величину мощности Nм, затрачиваемой на преодоление механических потерь:

По аналогии с индикаторной мощностью эффективную мощность (кВт) можно рассчитать по следующей формуле:

Механический КПД nм — оценочный показатель механических потерь в двигателе:

При работе автомобильных двигателей на номинальном режиме значение находится в следующих пределах: для четырехтактных карбюраторных двигателей 0,7.0,85; для четырехтактных дизелей без наддува 0,7.0,82, с наддувом 0,8-0,9; для газовых двигателей 0,75.0,85; для двухтактных высокооборотных дизелей 0,7-0,85.

Эффективный удельный расход топлива

Эффективный удельный расход топлива ge при известных эффективной мощности Ne и расходе топлива GT определяют по формуле:

Единица измерения эффективного удельного расхода топлива: г/ (кВт ч).

При работе двигателя на жидком топливе связь между ge и nе следующая:

Для автомобильных двигателей, работающих на номинальном режиме, значения эффективного КПД находятся в следующих пределах: для карбюраторных двигателей 0,25.0,33; для дизелей 0,35-0,4. При этом значение эффективного удельного расхода топлива составляет: для карбюраторных двигателей 300.370 г/ (кВт ч); для дизелей с неразделенными камерами сгорания 245.270 г/ (кВт ч).

Склонность бензинов к калильному зажиганию. При полной оценке качества автобензинов определяют также их способность к калильному зажиганию — косвенный показатель склонности к нагарообразованию. Калильное число — показатель, характеризующий вероятность возникновения неуправляемого воспламенения горючей смеси в цилиндрах двигателя вне зависимости от момента подачи искры свечей зажигания. Оно связано с появлением "горячих" точек в камере сгорания. Калильное зажигание делает процесс сгорания неуправляемым. Оно сопровождается снижением мощности и топливной экономичности двигателя и т.д. Калильное зажигание принципиально отличается от детонационного сгорания. Сгорание рабочей смеси после калильного зажигания может протекать с нормальными скоростями без детонации. КЧ выше у ароматических углеводородов и низкое у изопарафинов. ТЭС и сернистые соединения повышают склонность бензина к отложениям нагара. Основные направления борьбы с калильным зажиганием — это снижение содержания ароматических углеводородов в бензине, улучшение полноты сгорания путем совершенствования конструкций ДВС и применение присадок.

Ускоренное окисление бензинов при применении в карбюраторных двигателях вызывает образование смолистых отложений во впускном трубопроводе. Здесь благодаря действию воздуха, повышенной температуры и металла создаются наиболее благоприятные условия для окисления бензина, причем происходит энергичное радикально-цепное окисление не только углеводородной части бензина, но и ранее накопившихся смолистых веществ с образованием продуктов, не растворяющихся в бензине. Отложения во впускном трубопроводе уменьшают его проходное сечение и затрудняют подвод тепла к рабочей смеси. Вследствие этого ухудшается наполнение цилиндров и затрудняется испарение топлива, что, в свою очередь, приводит к снижению мощности и экономичности двигателя. Состав отложений по ходу впускного тракта не постоянен. Отложения, образующиеся непосредственно за карбюратором, в основном состоят из асфальтенов. В отложениях на тюльпанах впускного клапана всего 3 — 5% асфальтенов, а 2/з отложений составляют карбены и карбоиды.

Преждевременное воспламенение горючей смеси сопровождается снижением мощности и топливной экономичности двигателя, а в ряде случаев приводит к прогоранию и механическому разрушению поршней, залеганию колец и другим механическим повреждениям деталей цилиндропоршневой группы. Оценку склонности бензина к калильному зажиганию проводят по двум, принципиально разным методикам.

Таким образом, калильное зажигание нарушает нормальное протекание процесса сгорания, делает его неуправляемым, приводит к снижению мощности и ухудшению экономичности двигателя. Интенсивное калильное зажигание вызывает прогорание и механическое разрушение поршней, залегание поршневых колец, обгорание кромок поршней и клапанов, разрушение подшипников, обрыв шатунов и поломку коленчатых валов. В последнее время зарубежные специалисты расценивают борьбу с преждевременным воспламенением в двигателях. Калильные свойства углеводородов: с высокой степенью сжатия.

Отложения, образующиеся во впускном трубопроводе, обладают плохой теплопроводностью, что затрудняет подвод тепла к рабочей смеси и тем самым ухудшает условия испарения топлива. Огложения такого типа, образующиеся на штоках и тарелках впускных клапанов, нарушают нормальную работу клапанного механизма и могут привести к зависанию клапанов. Все эти явления сопровождаются снижением мощности и экономичности двигателя.

При окислении нестабильных углеводородов и неуглеводородных примесей в бензинах образуются высокомолекулярные смолистые вещества. При испарении бензина в диффузоре карбюратора и впускном трубопроводе смолистые соединения могут отлагаться на стенках и под действием высокой температуры превращаться в твердые отложения. Слой таких отложений на стенках впускного трубопровода создает дополнительное сопротивление для горючей смеси, затрудняет подвод тепла к смеси и ухудшает условия испарения. Подобные отложения на штоках и тарелках клапанов нарушают работу клапанного механизма и могут привести к "зависанию" клапанов. Все эти явления сопровождаются снижением мощности и экономичности двигателя.

Для оценки склонности бензинов к образованию отложений во впускной системе разработаны специальные лабораторные методы. Суть методов состоит в определении массы смолистых веществ, остающихся в стаканчиках после испарения бензина в струе воздуха или в струе водяного пара. Смолы, определенные такими методами, называют фактическими, т.е. присутствующими в бензине в данное время. Между содержанием фактических смол в бензине и массой отложений, образующихся во впускном трубопроводе двигателя, установлена прямолинейная зависимость. В связи с тем, что содержание фактических смол во время хранения возрастает, установлены две нормы — одна на g зво месте производства бензина, другая 2дА господство в воздухе, стремление летать выше, дальше и быстрее всех определили бурное развитие двигателя этого типа. Совершенствование двигателя шло по пути снижения его удельного веса, повышения литровой мощности, увеличения общей мощности, повышения к. п. д. и экономичности двигателя.

Читайте также:  Тест шин для внедорожников

Во впускном трубопроводе двигателя и на клапанах, они приводят к падению мощности и экономичности двигателя, а иногда и к полной его аварийной остановке.

Детонация вызывает резкое уменьшение мощности и экономичности двигателя и действует разрушительно на ряд основных деталей. Борьба с детонацией прежде всего является борьбой за рациональную организацию сгорания топлива, в которой проблема подбора топлива играет решающую роль в качестве одного из наиболее эффективных методов уменьшения склонности двигателя к детонации. Чрезвычайная сложность явления детонации обусловила то, что, несмотря на огромное число исследований, посвященных этому явлению, природа его до сих пор еще не вполне установлена, как равно еще. недостаточно учтена степень влияния на детонацию различных факторов. Несомненно, что детонация представляет собою особый характер протекания сгорания в двигателе, сопровождающегося очень быстрым воспламенением горючей смеси и связанной с этим большой скоростью выделения тепловой энергии. Переход нормального сгорания в детонацию может быть связан не только с громадным увеличением скорости протекания реакций, но также и с изменением характера реакций сгорания. Процесс детонации включает одновременно достаточно быстрое протекание реакций, обусловливающих бурное выделение энергии, и связанные с этим физические явления, влияющие как на состояние рабочего тела, так и на протекание самих исходных реакций. Явление детонации, обусловленное процессами, происходящими в газах, зависит почти от всех параметров работы двигателя, так как они отражаются на характере этих процессов, воздействуя или непосредственно на химический состав горючей смеси.

В то же время утяжеление топлива ухудшает условия распиливания, уменьшает скорость образования рабочей смеси, приводит к повышенному дымлению и снижению экономичности двигателя. Оптимальный фракционный состав диктуется конструктивными особенностями дизелей и условиями их эксплуатации. Так, стандартом на дизельное топливо для автотракторных, тепловозных и судовых дизелей установлены следующие температуры перетопки 50% топлива: летнего — не выше 200°С, зимнего — не выше 250°С, арктического — не выше 240°С.

Совершенствование ВРД и реактивных самолетов всегда было направлено на дальнейшее увеличение высоты и скоростей полета, повышение моторесурса, надежности и экономичности двигателей, обеспечение безопасности полетов. В зависимости от развиваемых скорости и высоты полета принято классифицировать ВРД и соответственно топлива на два типа: для дозвуковых и сверхзвуковых реактивных самолетов.

Некоторые данные свидетельствуют о том, что углеводороды и углеводородные топлива лишь незначительно различаются по теплоте сгорания, поэтому повышение мощности или экономичности двигателей за счет использования бензинов с каким-то повышенным "энергозапасом" не представляется возможным. Каких-либо присадок или добавок, резко повышающих теплоту сгорания, пока не найдено. Для некоторых специальных целей теплоту сгорания углеводородных топлив увеличивают за счет использования индивидуальных углеводородов ацетиленового ряда, добавления металлических суспензий, боргидридов и т.п. Однако такие способы слишком дороги, ограничены ресурсами.

Стремление к более полному использованию детонационной стойкости топлива и улучшению топливной экономичности двигателей на частичных нагрузках привело к созданию ряда конструкций двигателей с переменной степенью сжатия. Предлагаемые конструкции предусматривают увеличение степени сжатия двигателя при работе на частичных нагрузках, когда это не лимитируется детонацией. К сожалению, конструктивные усложнения, вводимые в двигателях с переменной степенью сжатия, пока столь велики, что они не компенсируются получаемыми преимуществами.

Образование нагара в цилиндрах приводит к снижению мощности и топливной экономичности двигателей и сокращает срок их службы. ‘Уменьшение нагарообразования может быть достигнуто улучшением качества применяемых топлив, совершенствованием камерах других типов, может оставаться на уровне 100-130 кг/см 2 . Экономичность этих двигателей приближается к экономичности двигателей с неразделенной камерой.

В зависимости от функционального назначения и условий эксплуатации техника комплектуется двигателями внутреннего сгорания с разными технико-эксплуатационными параметрами и мощностью — карбюраторными, дизельными, воздушно-реактивными, газотурбинными. В результате определяется объем потребления моторных топлив по их видам и качественной характеристике — автомобильные и авиационные бензины, реактивные, дизельные, моторные, газотурбинные топлива. Качественные требования к этим топливам функционально зависят от условий эксплуатации техники, в том числе природно-климатических, и степени форсирования двигателей. Потребность в моторных топливах даже при условии роста объемов работ и парка технических средств может быть снижена за счет улучшения топливной экономичности двигателей и технических средств.

В связи с этим в ведущих капиталистических странах — крупных продуцентах автомобилей — в период энергетического кризиса был широко развернут комплекс научно-технических работ по повышению топливной экономичности двигателей и автомобиля в целом. Эти работы ведутся в следующих основных направлениях: повышение эффективного к. п. д. двигателя и трансмиссии, снижение собственной массы автомобиля, применение электронной системы контроля режима работы двигателя, уменьшение аэродинамического сопротивления, снижение сопротивления качению. Большое значение придается также мастерству вождения автомобиля, качеству автомобильных дорог и оптимальной организации рабочих процессов при эксплуатации.

Карбюраторная система приготовления смеси претерпела длительный путь развития и усовершенствования отдельных узлов вплоть до применения систем современных многокамерных карбюраторов. Относительная простота конструкции и технического обслуживания карбюратора, высокая эксплуатационная надежность все еще обусловливают массовое применение его в автомобильной технике. Однако в связи с необходимостью повышения топливной экономичности двигателей и уменьшения их экологической опасности в последние годы электронная промышленность освоила микросхемы и микропроцессоры для создания надежного и оптимального дозирования топлива на всех режимах работы двигателя.

Некоторые данные свидетельствуют о том, что углеводороды и углеводородные топлива лишь незначительно различаются по теплоте сгорания, поэтому повышение мощности или экономичности двигателей за счет использования бензинов с каким-то повышенным "энергозапасом" не представляется возможным. Стремление к более полному использованию детонационной стойкости топлива и улучшению топливной экономичности двигателей на частичных нагрузках привело к созданию ряда конструкций двигателей с переменной степенью сжатия. Предлагаемые конструкции предусматривают увеличение степени сжатия двигателя при работе на частичных нагрузках,

Читайте также:  Дома на колесах своими руками видео

Ужесточение экологических требований к качеству смазочных материалов в первую очередь сказалось на стремлении эксплуатационников к выбору высококачественных моторных масел с повышенным ресурсом для снижения их удельного расхода, увеличения сроков смены и снижения содержания токсичных компонентов в выхлопных газах автомобильных двигателей. Высокие темпы дизелизации транспорта привели к качественному обновлению ассортимента потребляемых масел, не увеличив объема их производства. Формулирование требований к качеству смазочных материалов исходит, таким образом, из необходимости повышения экономичности двигателей и снижения экологической опасности при их эксплуатации.

Повышение экономичности и мощности двигателей всех типов может быть осуществлено за счет снижения механических потерь, на преодоление которых затрачивается 8.12 % теплоты сгорании топлива. Значение механического КПД можно увеличить, уменьшая потери на трение деталей КШМ и на приведение вспомогательных механизмов двигателя и увеличивая индикаторную мощность Р. Необходимо также учитывать, что наибольшая величина Мм имеет место при работе двигателя на полной нагрузке при малых скоростных режимах. Для уменьшения механических потерь в приводе, например, вентилятора системы охлаждения там устанавливают автоматически отключаемую муфту, что позволяет уменьшать потери мощности на привод вентилятора путем его отключения на некоторых режимах работы. Увеличение коэффициента наполнения в современных быстроходных двигателях обеспечивается применением верхнего расположения клапанов, двухкамерных карбюраторов, автоматического регулирования фаз газораспределения, уменьшением сопротивления впускной системы. Одним из наиболее эффективных мероприятий, увеличивающих литровую мощность двигателя, является наддув. Под наддувом понимается принудительная подача свежего заряда в цилиндры двигателя под давлением, превышающим давление окружающей среды. Из формулы (5.8) видно, что чем больше давление и меньше температура окружающей среды, определяющие давление и температуру при наполнении цилиндра, тем больше масса свежего заряда, а следовательно, мощность двигателя. Плотность, а значит, и массу свежего заряда можно значительно увеличить, повышая давление перед поступлением в цилиндры, что и делается при наддуве. Для наддува двигателей применяются центробежные и объемные нагнетатели. Привод центробежных нагнетателей осуществляется или от коленчатого вала двигателя, или от специальной газовой турбины, использующей энергию отработавших газов (газотурбинный наддув). Для охлаждения наддувочного воздуха применяют специальные охладители. Увеличение индикаторной мощности при газотурбинном наддуве приводит к некоторому росту хы и снижает удельный расход топлива. При величине давления наддува рк = 0,15.0,2 МПа степень повышения эффективной мощности составляет Iек =1,4.1,7, при рк > 0,2 МПа ieK > 2,0. В карбюраторных двигателях наддув почти не применяется из-за опасности возникновения детонации. Влияние частоты вращения коленчатого вала на литровую мощность двигателя необходимо оценивать по комплексному множителю. Учм — При повышении частоты вращения для форсирования двигателя необходимо, чтобы этот множитель был максимальным. На развиваемую двигателем мощность и его экономичность оказывают влияние условия технической эксплуатации. Здесь прежде всего надо отметить необходимость организации оптимального технического обслуживания, соблюдения рекомендованных заводом-изготовителем технических регулировок в механизмах и системах двигателя. Оценка различных путей реализации рассмотренных направлений приводит к выводу, что наиболее эффективными методами повышении экономических показателей двигателя являются:

повышение степени сжатия и использование бедных горючих смесей;

совершенствование качества смесеобразования и повышение механического КПД;

соблюдение условий технической эксплуатации двигателя. Повышения мощности двигателя, кроме того, можно достичь следующими способами:

увеличением объема двигателя;

повышением частоты вращения коленчатого вала;

переходом с четырехтактного цикла на двухтактный;

увеличением массы циклового заряда за счет совершенствования процесса газообмена и за счет наддува и промежуточного охлаждения заряда.

Эффективные показатели характеризуют работу двигателя и отличаются от индикаторных показателей на величину механических потерь.

2.8.1 Давление механических потерь

К механическим потерям относятся все потери на преодоление различных сопротивлений, таких как трение, привод вспомогательных механизмов, газообмен, привод компрессора.

Давление механических потерь – это условное давление, равное отношению работы механических потерь к рабочему объёму цилиндра двигателя. Величину давления механических потерь в МПа оценивают по средней скорости поршня по формуле:

где и – экспериментальные коэффициенты, величины которых приведены в таблице 2.9;

– средняя скорость поршня в м/с, которая для различных типов двигателей выбирается в следующих пределах:

— карбюраторные двигатели легковых автомобилей 12…20;

— карбюраторные двигатели грузовых автомобилей 9…16;

— дизельные двигатели 7…13.

Таблица 2.9 – Значения коэффициентов и

Тип двигателя
Карбюраторный с числом цилиндров (i ≥ 8) и отношением хода поршня к его диаметру (S/D ≤ 1,0) 0,039 0,0132
Карбюраторный с числом цилиндров (i ≤ 6) и отношением хода поршня к его диаметру (S/D ≤ 1,0) 0,034 0,0113
Карбюраторный с числом цилиндров (i ≤ 6) и отношением хода поршня к его диаметру (S/D > 1,0) 0,049 0,0152
Дизельный: — с неразделёнными камерами — с разделёнными камерами 0,089 0,105 0,0118 0,0138

2.8.2 Среднее эффективное давление

Среднее эффективное давление в МПа определяется по формуле

.

2.8.3 Механический КПД

Механический КПД определяется по формуле

.

2.8.4 Эффективный КПД

Отношение количества теплоты, эквивалентной полезной работе на валу двигателя, к общему количеству теплоты, внесённой в двигатель с топливом, называется эффективным КПД , который определяется по формуле:

2.8.5 Эффективный удельный расход топлива

Эффективный удельный расход топлива в г/(кВт·ч) определяется по формуле:

Рассчитанные эффективные показатели двигателя необходимо сравнить со значениями этих показателей современных двигателей внутреннего сгорания, представленных в таблице 2.10.

Таблица 2.10 – Значения эффективных показателей двигателей

Тип двигателя Показатели
Карбюраторный 0,6…1,1 0,23…0,38 0,75…0,92 230…310
Дизельный без наддува 0,65…0,85 0,28…0,42 0,70…0,85 200…260
Дизельный с наддувом 0,7…2,0 0,32…0,45 0,80…0,90 200…260

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8754 — | 7489 — или читать все.

Читайте также:  Сколько ходит вариатор на мурано

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Эффективные показатели работы двигателя: среднее эффективное давление, эффективная мощность, механический КПД и эффективный удельный расход топлива.

Среднее эффективное давление ре — условное постоянное давление в цилиндрах двигателя, при котором работа, производимая в них за один такт, равна эффективной работе за цикл. Оно, так же как и среднее индикаторное давление, — мера удельной работы. Единица измерения: МПа или Дж/л.

Среднее эффективное давление можно представить как отношение эффективной работы Le двигателя за один цикл к рабочему объему цилиндра Vh:

Это давление можно также представить как разность между средним индикаторным давлением рi- и средним давлением механических потерь рм, т. е.

Эффективная мощность Ne — это мощность на коленчатом валу двигателя, передаваемая трансмиссии. Эффективная мощность меньше индикаторной на величину мощности Nм, затрачиваемой на преодоление механических потерь:

Механический КПД nм — оценочный показатель механических потерь в двигателе:

nм = LeLi = ре/рi = Me/Mi = Ne/Ni.

При работе автомобильных двигателей на номинальном режиме значение находится в следующих пределах: для четырехтактных карбюраторных двигателей 0,7. 0,85; для четырехтактных дизелей без наддува 0,7. 0,82, с наддувом 0,8—0,9; для газовых двигателей 0,75. 0,85; для двухтактных высокооборотных дизелей 0,7-0,85.

Эффективный удельный расход топлива ge при известных эффективной мощности Ne и расходе топлива GT определяют по формуле:

Единица измерения эффективного удельного расхода топлива: г/(кВт • ч).

При работе двигателя на жидком топливе связь между ge и nе следующая:

nе = 3,6 • 103/(geQн)

Для автомобильных двигателей, работающих на номинальном режиме, значения эффективного КПД находятся в следующих пределах: для карбюраторных двигателей 0,25. 0,33; для дизелей 0,35—0,4. При этом значение эффективного удельного расхода топлива составляет: для карбюраторных двигателей 300. 370 г/ (кВт • ч); для дизелей с неразделенными камерами сгорания 245. 270 г/(кВт • ч).

Удельные показатели двигателя.

Удельной поршневой мощностью двигателя называется эффективная мощность двигателя, отнесенная в сумме площадей поршня двигателя:

Удельная поршневая мощность характеризует общую напряженность двигателя.

Удельная литровая мощность

Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

Тепловой баланс двигателя.

Тепло, выделяющееся при сгорании топлива, не может быть полно­стью превращено в полезную работу, так как в соответствии со вторым законом термодинамики часть этого тепла должна быть передана хо­лодному источнику. В реально выполненных двигателях, работающих по действительному циклу, имеют место дополнительные потери тепла в охлаждающую воду, с отработавшими газами и др. Количественное распределение тепловой энергии топлива на полезную работу и потери при превращении тепла в механическую работу в цилиндрах двигателя носят название теплового баланса.

Тепловой баланс двигателя определяется не аналитически, а на ос­новании экспериментальных данных при испытании двигателя. Однако и в этом случае часть тепловых потерь не поддается учету.

Эти потери сводят в остаточный член Qs теплового баланса, который учитывает: 1) потери от неполноты сгорания вследствие плохого пере­мешивания топлива с воздухом; 2) потери, эквивалентные части работы трения в подшипниках и прочих механизмах (потери тепла на трение между поршнем и цилиндром поглощаются охлаждающей водой); 3) по­тери от лучеиспускания и 4) потери, эквивалентные кинетической энер­гии отработавших газов. Кроме того, в остаточный член входит неизбеж­но получающаяся при экспериментировании неувязка теплового баланса. Суммарно остаточный член Qs теплового баланса составляет 5—10% от общего количества тепла, введенного в цилиндр двигателя. Практически Qs определяют как разность между количеством затраченного тепла в единицу времени QT и следующими составляющими теплового баланса:

1.Тепло Qe, превращенное в полезную работу:

Qe=Ne дж/сек (Qe=632Ne кал/ч)

2.Тепло Qω потерянное с охлаждающей водой:

Qω=Gв (tвых- tвх) Со,

где tвх и t вых — температура входящей и выходящей воды;

GB — количество воды, кг/ч;

Со — теплоемкость воды.

В двигателях внутреннего сгорания в охлаждающую воду уходит 25 ÷ 40% тепла топлива (рис. 28.2).

3.Тепло Qg, теряемое с отработавшими газами:

Qg= (М п.с mcp’ Tr—M1 mcpTa)Gr

где М п.с и M1— число молей продуктов сгорания и свежего заряда на 1 кг топлива;

mс’ р и mср— молярные теплоемкости продуктов сгорания и свеже­го заряда при р=const;

Tr и Та — температура отработавших газов и свежего заряда;

GT — количество топлива.

С отработавшими газами в двигателях внутреннего сгорания уно­сится 20—25% тепла топлива.

4.Тепло Qx, теряемое вследствие химической неполноты сгорания и определяемое по выражению

При работе на бедных смесях в карбюраторных двигателях и дизелях этот член не учитывается.

В результате тепловой баланс имеет следующий вид:

По тепловому балансу можно оценить долю потерь каждой из со­ставляющих баланса и при доводке двигателя определить возможность снижения принципиально устранимых потерь тепла, имеющих место в двигателе сверх неизбежных потерь. Принципиально устранимые потери включены в следующие составляющие баланса: Qg, Qw, Qx, Qs вместе с неизбежными потерями, согласно второму закону термодинамики.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *