Как конденсатор влияет на работу двигателя

Содержание
  1. Простые способы подключения электродвигателя
  2. Особенности схемы с конденсаторами
  3. Емкость рабочего конденсатора
  4. Упрощенный вариант расчета рабочего конденсатора
  5. Пусковой конденсатор
  6. Какой тип конденсаторов использовать
  7. Использование электролитических конденсаторов
  8. Рабочее напряжение
  9. Подключение электромотора: практический пример
  10. Обратите внимание
  11. Что такое конденсатор
  12. Как подобрать конденсатор для трехфазного электродвигателя
  13. Как подобрать конденсатор для однофазного электродвигателя
  14. Итак, как подобрать конденсатор для однофазного электродвигателя?
  15. Зачем нужен конденсатор?
  16. Что плохого в просадках напряжения?
  17. Почему появляются просадки напряжения?
  18. Как конденсатор решает эту проблему?
  19. Конденсатор конденсатору — рознь!
  20. Дополнительные сведения по выбору конденсатора
  21. Устройство конденсатора и его свойства
  22. Накопление энергии
  23. Зависимость сопротивления от частоты тока
  24. Где применяются конденсаторы?

Если имеется необходимость подключить асинхронный трехфазный электромотор в бытовую сеть, можно столкнуться с проблемой – сделать это, кажется, совершенно невозможно. Но если знаете основы электротехники, то можно подключить конденсатор для запуска электродвигателя в однофазной сети. Но существуют и бесконденсаторные варианты подключения, их тоже стоит рассмотреть при проектировании установки с электромотором.

Простые способы подключения электродвигателя

Проще всего будет подключить мотор при помощи частотного преобразователя. Существуют модели этих устройств, которые делают преобразование однофазного напряжения в трехфазное. Преимущество такого способа очевидно – нет потерь мощности в электродвигателе. Но вот стоимость такого частотного преобразователя довольно высокая – самый дешевый экземпляр обойдется в 5-7 тыс. рублей.

Есть еще один способ, который используется реже, – применение трехфазной обмотки асинхронника для преобразования напряжения. В этом случае вся конструкция окажется намного больше и массивнее. Поэтому проще окажется рассчитать, какие конденсаторы нужны для запуска электродвигателя и установить их, подключив по схеме. Главное – не потерять мощность, так как работа механизма будет происходить намного хуже.

Особенности схемы с конденсаторами

Обмотки всех трехфазных электромоторов могут соединяться по двум схемам:

  1. «Звезда» – при этом концы всех обмоток подключаются в одной точке. А начала обмоток соединяются с питающей сетью.
  2. «Треугольник» – начало обмотки соединяется с концом соседней. В итоге получается, что точки соединения двух обмоток подключаются к сети питания.

Выбор схемы зависит от того, каким напряжением питается мотор. Обычно при подключении к сети переменного тока 380 В обмотки соединяются в «звезду», а при работе под напряжением 220 В – в «треугольник».

На рисунке выше:

а) схема соединения "звезда";

б) схема соединения "треугольник".

Так как в однофазной сети явно не хватает одного питающего провода, нужно его сделать искусственно. Для этого применяются конденсаторы, которые сдвигают фазу на 120 градусов. Это рабочие конденсаторы, их оказывается недостаточно при пуске электромоторов мощностью свыше 1500 Вт. Чтобы осуществить запуск мощных двигателей, потребуется дополнительно включать еще одну емкость, которая облегчит работу во время старта.

Емкость рабочего конденсатора

Для того чтобы узнать, какие конденсаторы нужны для запуска электродвигателя при работе в сети 220 В, нужно использовать такие формулы:

  1. При подключении по схеме «звезда» С (раб) = (2800 * I1) / U (сети).
  2. При подключении в "треугольник" С (раб) = (4800 * I1) / U (сети).

Ток I1 можно измерить самостоятельно, используя клещи. Но можно использовать и такую формулу: I1 = P / (1,73 · U (сети) · cosφ · η).

Значение мощности Р, напряжения питания, коэффициента мощности cosφ, КПД η можно найти на бирке, которая приклепана на корпусе электродвигателя.

Упрощенный вариант расчета рабочего конденсатора

Если все эти формулы кажутся вам немного сложными, можно воспользоваться их упрощенной версией: С (раб) = 66 * Р (двиг).

А если упростить по максимуму расчет, то для каждых 100 Вт мощности электромотора требуется емкость около 7 мкФ. Другими словами, если у вас мотор 0,75 кВт, то вам потребуется рабочий конденсатор емкостью не менее 52,5 мкФ. После подбора обязательно произведите замер тока при работе мотора – его величина не должна превышать допустимые значения.

Пусковой конденсатор

В том случае, если на мотор воздействуют большие нагрузки либо его мощность свыше 1500 Вт, одним только сдвигом фазы не обойтись. Потребуется знать, какие необходимы еще конденсаторы для запуска электродвигателя 2,2 кВт и выше. Пусковой подключается в параллель с рабочим, но вот только он исключается из цепи при достижении оборотов холостого хода.

Обязательно пусковые конденсаторы должны отключаться – в противном случае происходит перекос фаз и перегрев электродвигателя. Пусковой конденсатор должен быть по емкости больше рабочего в 2,5-3 раза. Если вы посчитали, что для нормальной работы мотора требуется емкость 80 мкФ, то для запуска нужно подключать еще один блок конденсаторов на 240 мкФ. В продаже вряд ли можно встретить конденсаторы с такой емкостью, поэтому нужно производить соединение:

  1. При параллельном емкости складываются, напряжение рабочее остается таким, как указано на элементе.
  2. При последовательном соединении складываются напряжения, а общая емкость будет равна С (общ) = (С1*С2*..*СХ)/(С1+С2+..+СХ).

Желательно устанавливать пусковые конденсаторы на электромоторы, мощность которых — свыше 1 кВт. Лучше немного снизить показатель мощности, чтобы увеличить степень надежности.

Какой тип конденсаторов использовать

Теперь вы знаете, как подобрать конденсаторы для запуска электродвигателя при работе в сети переменного тока 220 В. После подсчета емкости можно приступить к выбору конкретного типа элементов. Рекомендуется применять однотипные элементы в качестве рабочих и пусковых. Неплохо показывают себя бумажные конденсаторы, обозначения у них такие: МБГП, МПГО, МБГО, КБП. Можно также использовать и зарубежные элементы, которые устанавливаются в блоках питания компьютеров.

На корпусе любого конденсатора обязательно указывается рабочее напряжение и емкость. Один недостаток у бумажных элементов – они имеют большие габариты, поэтому для работы мощного двигателя потребуется немаленькая батарея элементов. Применять зарубежные конденсаторы намного лучше, так как они имеют меньшие размеры и большую емкость.

Использование электролитических конденсаторов

Можно применять даже электролитические конденсаторы, но у них есть особенность – они должны работать на постоянном токе. Поэтому, чтобы установить их в конструкцию, потребуется использовать полупроводниковые диоды. Без них использовать электролитические конденсаторы нежелательно – они имеют свойство взрываться.

Но даже если вы установите диоды и сопротивления, это не сможет гарантировать полную безопасность. Если полупроводник пробивается, то на конденсаторы поступит переменный ток, в результате чего произойдет взрыв. Современная элементная база позволяет использовать качественные изделия, например конденсаторы полипропиленовые для работы на переменном токе с обозначением СВВ.

Читайте также:  Видеорегистратор с креплением на панель

Например, обозначение элементов СВВ60 говорит о том, что конденсатор имеет исполнение в цилиндрическом корпусе. А вот СВВ61 имеет прямоугольной формы корпус. Эти элементы работают под напряжением 400. 450 В. Поэтому они могут без проблем использоваться в конструкции любого аппарата, где требуется подключение асинхронного трехфазного электродвигателя в бытовую сеть.

Рабочее напряжение

Обязательно нужно учитывать один важный параметр конденсаторов – рабочее напряжение. Если использовать конденсаторы для запуска электродвигателя с очень большим запасом напряжения, это приведет к увеличению габаритов конструкции. Но если применить элементы, рассчитанные на работу с меньшим напряжением (например, 160 В), то это приведет к быстрому выходу из строя. Для того чтобы конденсаторы функционировали нормально, нужно, чтобы их рабочее напряжение было примерно в 1,15 раза больше, чем в сети.

Причем нужно учитывать одну особенность – если применяете бумажные конденсаторы, то при работе в цепях переменного тока их напряжение нужно уменьшать в 2 раза. Другими словами, если на корпусе указано, что элемент рассчитан на напряжение 300 В, то эта характеристика актуальна для постоянного тока. Такой элемент можно использовать в цепи переменного тока с напряжением не более 150 В. Поэтому лучше набирать батареи из бумажных конденсаторов, суммарное напряжение которых — около 600 В.

Подключение электромотора: практический пример

Допустим, у вас имеется электрический двигатель асинхронного типа, рассчитанный на подключение к сети переменного тока с тремя фазами. Мощность — 0,4 кВт, тип мотора — АОЛ 22-4. Основные характеристики для подключения:

  1. Мощность — 0,4 кВт.
  2. Напряжение питания — 220 В.
  3. Ток при работе от трехфазной сети составляет 1,9 А.
  4. Соединение обмоток двигателя производится по схеме «звезда».

Теперь осталось провести расчет конденсаторов для запуска электродвигателя. Мощность мотора сравнительно небольшая, поэтому, чтобы его использовать в бытовой сети, нужно подобрать только рабочий конденсатор, в пусковом надобности нет. По формуле вычисляете емкость конденсатора: С (раб) = 66*Р (двиг) = 66*0,4 = 26,4 мкФ.

Можно использовать и более сложные формулы, значение емкости будет отличаться от этого незначительно. Но если нет подходящего по емкости конденсатора, нужно произвести соединение нескольких элементов. При параллельном соединении емкости складываются.

Обратите внимание

Теперь вы в курсе, какие конденсаторы для запуска электродвигателя лучше всего использовать. Но мощность упадет примерно на 20-30 %. Если приводится в движение простой механизм, то это не почувствуется. Частота вращения ротора останется примерно такой же, какая указана в паспорте. Учтите, что если мотор рассчитан на работу от сети 220 и 380 В, то в бытовую сеть он включается только при условии, что обмотки соединены в треугольник. Внимательно изучите бирку, если на ней имеется только обозначение схемы «звезда», то для работы в однофазной сети придется вносить изменения в конструкцию электромотора.

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).
Читайте также:  Пгу камаз 5320 устройство в картинках

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

31 пїЅпїЅпїЅпїЅпїЅ 2014

Зачем нужен конденсатор?

Единственная цель применения конденсаторов в автомобильных аудиосистемах — это борьба с просадками напряжения, т.е. стабилизация напряжения.

Просадки напряжения убили звук? Заряжай конденсатор!

Рис. 1. Конденсаторы — снаряды с электроэнергией.

Что плохого в просадках напряжения?

Наилучшее качество звучания и максимальную мощность усилители звука демонстрируют при стабильном напряжении 13,5 — 14 В. Но на практике, без применения конденсаторов, напряжение в системе питания далеко от идеала, а главное, совершенно не стабильно и проседает чуть ли не в такт музыке. При этом у любого усилителя звука значительно снижается эффективность работы, качество звучания и мощность.

Эффективности работы, т.е. уровень мощности и звуковых искажений любого усилителя звука напрямую зависит от напряжения на питающих клеммах.

Почему появляются просадки напряжения?

Во-первых , штатный автомобильный аккумулятор не способен отдавать большие токи достаточно быстро из-за своего большого внутреннего сопротивления (от 30мОм). В результате, вместо 13,5 — 14 В даже при работающем двигателе, особенно в моменты пиковой мощности, например, ударов по барабанам или другого басового импульса, напряжение может проседать на несколько вольт. Такое падение напряжения однозначно приводит к значительному снижению мощности и появлению звуковых искажений, ощутимых на слух даже неопытному слушателю.

Во-вторых , значительная удаленность аккумулятора от усилителей требует применения довольно длинных силовых кабелей. Любой кабель, даже если он сделан из меди и самого подходящего сечения имеет свое, пусть и небольшое сопротивление. Чем длиннее кабель, тем больше его сопротивление, тем больше он препятствует мгновенной передаче больших токов.

В-третьих , в электрической цепи присутствует множество соединительных элементов: держателей предохранителей, разветвителей питания, клемм и др. Каждый из этих элементов соединяет разные металлы, создавая так называемое переходное сопротивление. Конечно, качественные латунные соединительные элементы незначительно влияют на общие просадки напряжения. Однако, как правило, в погоне за ценой многие используют соединительные элементы из низкокачественных сплавов на основе цинка. Это приводит к энергетическим потерям на данных участках цепи.

Как конденсатор решает эту проблему?

Проведем аналогию. Представим, что электрический ток — это вода. Для максимально эффективной работы усилителям звука нужно много энергии, т.е. воды. Тогда штатный аккумулятор — это большая бутылка с узким горлышком. Через горлышко не может вылиться много воды сразу, которую требуют усилители звука для обработки мощного широкополосного сигнала или басового импульса. В таком случае, конденсатор — это ведро. Ведром можно быстро черпать и выливать большое количество воды. Таким образом и конденсатор мгновенно отдает и получает снова свой заряд, стабилизируя напряжение на питающих кабелях усилителя.

Рис. 2. Конденсаторы и штатный АКБ как ведро и бутылка.

Конденсатор конденсатору — рознь!

Радиолюбители используют алюминиевые, танталовые, керамические конденсаторы и многие другие. От правильного выбора конденсатора зависит его надежность при эксплуатации, так как использовать его надо в таких режимах работы, которые не превышают заданные условия. Для этого нужно определить значения номинальных параметров и допустимые их изменения в процессе работы, возможные режимы и электрические нагрузки, конструкцию, показатели надежности и долговечности, варианты монтажа, размеры и массу.

Практика работы показывает, что разрешенное напряжение, обозначенное на его корпусе, не должно быть меньше, чем на электрической схеме. Можно выбрать больше на 20-30%. Емкость может быть использована в пределах +-10%, но лучше брать ее не меньше, чем на электрической схеме.

Если конденсаторы должны находиться в цепи питания, шунтировать ВЧ (высокие частоты), тогда лучше использовать керамические. Если они должны быть установлены в частотозадающем каскаде, тогда лучше брать их с малым ТКЕ (температурный коэффициент емкости), чтобы не было дрейфа частоты. Во всех случаях конденсаторы следует использовать при меньших нагрузках и облегченных режимах (по сравнению с максимально допустимыми).

Дополнительные сведения по выбору конденсатора

Выполненный монтаж и крепление должны обеспечивать нужную механическую прочность, отличный электрический контакт и отсутствие резонансных явлений. Их приспособления (для крепления) не должны повредить корпус и защитные покрытия, а также ухудшать условия отвода тепла. Никогда не надо применять конденсаторы сомнительного происхождения (например, электролитические, выполненные некачественно могут взрываться). Надо обращать внимание на удобство установки и наличие защиты выводных контактов от случайного замыкания.

Радиолюбители выбирают конденсаторы по их емкостям и рабочим напряжениям. Но есть и другие характеристики, на которые нужно обращать внимание. Конденсаторы еще не имеют идеальных параметров, поэтому они обладают такими свойствами, как ESR (Effective Series Resistance) — эквивалентное последовательное сопротивление и ESI (Effective Series Inductance) — эквивалентная последовательная индуктивность. На их емкость влияет температура, напряжение, механические воздействия. При неправильном выборе конденсатора может появиться повышенное потребление тока и увеличенный уровень шумов, нестабильная работа всей конструкции.

При подключении асинхронного электродвигателя в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз на обмотках статора, чтобы сделать имитацию вращающегося магнитного поля (ВМП), которое заставляет вращаться вал ротора двигателя при подключению его в «родные» трехфазные сети переменного тока. Известная многим, кто знаком с электротехникой, способность конденсатора давать электрическому току «фору» на π/2=90° по сравнению с напряжением, оказывает хорошую услугу, так как это создает необходимый момент, заставляющий вращаться ротор в уже «не родных» сетях.

Но конденсатор для этих целей необходимо подбирать, причем нужно делать с высокой точностью. Именно поэтому читателям нашего портала предоставляется в абсолютное безвозмездное пользование калькулятор расчета емкости рабочего и пускового конденсатора. После калькулятора будут даны необходимые разъяснения по всем его пунктам.

Калькулятор расчета емкости рабочего и пускового конденсаторов

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Читайте также:  Замена прокладки выпускного коллектора калина 8 клапанов

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником» : Сф=4800 I/U;
  • для соединения «звездой» : Сф=2800 I/U.

Об этих типах соединения можно подробнее ознакомиться :

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70 P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

Если заглянуть внутрь корпуса любого электроприбора, можно увидеть множество различных компонентов, применяемых в современной схемотехнике. Разобраться, как работают все эти соединенные в единую систему резисторы, транзисторы, диоды и микросхемы, довольно сложно. Однако для того чтобы понять, зачем нужен конденсатор в электрических цепях, достаточно знаний школьного курса физики.

Устройство конденсатора и его свойства

Конденсатор состоит из двух или более электродов – обкладок, между которыми помещен слой диэлектрика. Такая конструкция обладает способностью накапливать электрический заряд при подключении к источнику напряжения. В качестве диэлектрика могут использоваться воздух или твердые вещества: бумага, слюда, керамика, оксидные пленки.

Основная характеристика конденсатора – постоянная или переменная электрическая емкость, измеряемая в фарадах. Она зависит от площади обкладок, зазора между ними и вида диэлектрика. Емкость конденсатора определяет два важнейших его свойства: способность накапливать энергию и зависимость проводимости от частоты пропускаемого сигнала, благодаря которым этот компонент получил широкое применение в электрических цепях.

Накопление энергии

Если подключить плоский конденсатор к источнику постоянного напряжения, на одном из его электродов будут постепенно собираться отрицательные заряды, а на другом – положительные. Данный процесс, называемый зарядкой, показан на рисунке. Его длительность зависит от значений емкости и активного сопротивления элементов цепи.

Наличие диэлектрика между обкладками препятствует протеканию заряженных частиц внутри устройства. Но в самой цепи в это время электрический ток будет существовать до тех пор, пока напряжения на конденсаторе и источнике не станут равны. Теперь, если отключить элемент питания от емкости, она сама будет являться своеобразной батарейкой, способной отдавать энергию в случае подсоединения нагрузки.

Зависимость сопротивления от частоты тока

Подключенный к цепи переменного тока конденсатор будет периодически перезаряжаться в соответствии с изменением полярности питающего напряжения. Таким образом, рассматриваемый электронный компонент, наряду с резисторами и катушками индуктивности, создает сопротивление Rс=1/(2πfC), где f – частота, С – емкость.

Как видно из представленной зависимости, конденсатор обладает высокой проводимостью по отношению к высокочастотным сигналам и слабо проводит низкочастотные. Сопротивление емкостного элемента в цепи постоянного тока будет бесконечно большим, что эквивалентно ее разрыву.

Изучив эти свойства, можно рассмотреть, зачем нужен конденсатор и где он используется.

Где применяются конденсаторы?

  • Фильтры – устройства в радиоэлектронных, энергетических, акустических и других системах, предназначенные для пропускания сигналов в определенных диапазонах частот. Например, в обычном зарядном устройстве для мобильного телефона применяются конденсаторы для сглаживания напряжения за счет подавления высокочастотных составляющих.
  • Колебательные контуры электронной аппаратуры. Их работа основана на том, что при включении конденсаторов в совокупности с катушкой индуктивности в цепи возникают периодические напряжения и токи.
  • Формирователи импульсов, таймеры, аналоговые вычислительные устройства. В работе этих систем используется зависимость времени заряда конденсатора от величины емкости.
  • Выпрямители с умножением напряжения, применяемые в том числе в рентгенотехнических установках, лазерах, ускорителях заряженных частиц. Здесь важнейшую роль играет свойство емкостного компонента накапливать энергию, сохранять и отдавать ее.

Конечно, это только самые распространенные устройства, где используются конденсаторы. Без них не обойдется ни одна сложная бытовая, автомобильная, промышленная, телекоммуникационная, силовая электронная аппаратура.

Оцените статью
Добавить комментарий

Adblock
detector