Какого цвета датчик температуры охлаждающей жидкости

Проверка датчика температуры является несложной процедурой, с которой может справиться даже начинающий автолюбитель. Датчик температуры охлаждающей жидкости (сокращенно — ДТОЖ) представляет собой термистор, то есть, резистор, изменяющий значение своего внутреннего сопротивления в соответствии с температурой, куда помещен его исполнительный элемент. Чаще всего для этого используют мультиметр (другое название — тестер, «цэшка»), который в состоянии измерять значение электрического сопротивления в цепи.

Как работает датчик температуры ОЖ

Перед тем как перейти к обсуждению вопроса о том, как проверить датчик температуры охлаждающей жидкости, необходимо вкратце остановиться на признаках его неисправностях и разобраться с тем, как он работает. Это поможет определиться с диагностикой. Как указывалось выше, датчик температуры охлаждающей жидкости (иногда его называют просто датчик температуры двигателя) представляет собой термистор — резистор, изменяющий свое сопротивление в зависимости от изменения температуры, в частности охлаждающей жидкости системы охлаждения двигателя. Соответствующее значение сопротивления и его изменение фиксируется электронным блоком управления двигателем (сокращенно, ЭБУ), на основании которого он выдает соответствующие команды.

По информации от датчика температуры охлаждающей жидкости ЭБУ при запуске выставляет необходимое количество шагов регулятора холостого хода (РХХ), тем самым регулируя подачу топлива. Упомянутый термистор обладает так называемый «отрицательный температурный коэффициент». Это означает, что при холодной температуре его электрическое сопротивление имеет большое значение, а при нагреве чувствительного элемента это сопротивление падает.

Управление датчиком происходит путем подачи на него электрического сигнала с постоянным напряжением 5 Вольт от электронного блока управления через резистор с постоянным сопротивлением, которое находится внутри управляющего контроллера. Соответственно, температуру охлаждающей жидкости блок управления вычисляет по падению напряжения на датчике, который, как указывалось выше, имеет переменное сопротивление. На холодном двигателе падение напряжения будет больше, соответственно, на прогретом — меньше. И на холодном двигателе напряжение на датчике будет выше, а на горячем — ниже.

Признаки выхода из строя датчика ОЖ

О необходимости выполнения проверки датчика температуры охлаждающей жидкости, будут свидетельствовать ряд признаков. Однако тут стоит отметить, что перечисленные ниже ситуации могут быть признаками и других поломок в двигателе автомобиля, поэтому для получения точного результата необходимо выполнить дополнительную диагностику. Итак, к признакам поломки датчика температуры охлаждающей жидкости относится:

  • Активизация контрольной лампы на панели Check Engine. Однако она может активироваться и при других поломках, поэтому необходимо выполнить дополнительное сканирование кода ошибки.
  • Повышение расхода топлива. Это вызвано тем, что на электронный блок управления подается некорректная информация, и соответственно, он также не в состоянии определить сколько именно топлива нужно не только создания оптимальной топливовоздушной смеси, но и для поддержания температуры двигателя в нормальном (не аварийном) диапазоне.
  • Нестабильная работа мотора. В частности, нестабильная его работа на холостых оборотах, сложности с запуском (особенно в холодное время года), самопроизвольная остановка при низких оборотах.
  • Двигатель глохнет «на горячую». То есть, он может внезапно заглохнуть при достижении критической температуры охлаждающей жидкости. Причем это не зависит от того, какая именно охлаждающая жидкость была залита в систему (в частности, фабричный антифриз или обыкновенная вода).
  • Проблемы в работе охлаждающего вентилятора на радиаторе. Это может проявляться по-разному. В одних случаях вентилятор не включается вовсе, в других — не включается в аварийных режимах, в третьих — не выключается даже при остывании двигателя. При отключении датчика температуры охлаждающей жидкости электронный блок управления воспринимает это как обрыв цепи датчика и принудительно включает вентилятор. В любом случае для получения точной картины необходимо выполнить дополнительную диагностику датчика и/или термостата.

В связи с тем, что указанный датчик имеет достаточно простое устройство и чаще всего неразборной корпус, то при выходе его из строя он подлежит замене. Это касается практически всех машин, на которых установлено данное устройство.

Расположение датчика на двигателе

Для того чтобы выполнить проверку датчика температуры ОЖ необходимо знать, где он расположен. Естественно, что данная информация будет разниться у автомобилей различных марок и моделей. Однако существует несколько типовых признаков, по которым можно найти то место, где непосредственно закреплен датчик. Так, в большинстве случаев он расположен на выпускном патрубке головки блока цилиндров. Конструктивно он имеет металлическую резьбу, с помощью которой и вкручивается в соответствующее отверстие. Основное требование в данном случае — обеспечение прямого контакта его чувствительного элемента и охлаждающей жидкости. Именно такой контакт и обеспечивает точность показаний датчика.

Обратите внимание, что на некоторых автомобилях конструкцией может быть предусмотрена установка двух датчиков температуры. В этом случае первый из них фиксирует температуру охлаждающей жидкости на выходе из двигателя (цилиндров), а второй — на выходе из радиатора. Такой подход дает возможность более точного контроля за состоянием как двигателя в целом, так и его охлаждающей системы в частности. Однако два датчика обычно устанавливают на мощные и/или дорогие машины, где этот параметр критически важен, а в ЭБУ заложены специальные программы для работы двигателя. Дополнительную информацию об устройстве конкретного автомобиля вы можете найти в соответствующем мануале или технической документации.

Причины поломки датчика температуры ОЖ

Конструктивно датчик охлаждающей жидкости достаточно прост, и соответственно, выходит из строя редко. Обычно это происходит банально из-за его старости или механического повреждения. Например, коррозия контактов и металлических деталей корпуса может возникнуть из-за того, что вместо тосола или антифриза в систему охлаждения была залита обыкновенная вода (а тем более если эта вода «жесткая», то есть, с большим содержанием солей металлов). Также причинами выхода из строя этого устройства могут быть:

  • Повреждение корпуса. Это может выражаться в различных аспектах. Зачастую при этом видны потеки охлаждающей жидкости, которая вытекает из резьбы датчика или его корпуса. Также при этом могут быть повреждены электрические контакты и/или непосредственно терморезистор, который будет выдавать некорректный сигнал.
  • Окисление контактов. Иногда возникают ситуации, когда под воздействием испарений или просто от старости окисляются контакты на датчике, поэтому электрический сигнал не проходит через них.
  • Повреждение «фишки». В некоторых случаях при механических повреждениях возможен выход из строя так называемой «фишки», то есть, группы контактов, которая подсоединяется к датчику температуры ОЖ. Проще говоря, перетираются провода у основании разъема. По статистике отзывов, найденных в интернете, это одна из самых распространенных неисправностей, которая случается с датчиком и соответствующей системой.
  • Нарушение электрического контакта внутри датчика. В этом случае, к сожалению, ремонт вряд ли возможен, поскольку обычно его корпус запаян и не дает возможности доступа к внутренностям ДТОЖ. Соответственно, в этом случае датчик нужно только менять на новый.
  • Нарушение изоляции проводов. В частности, речь идет о питающих и сигнальных проводах, которые идет на датчик от электронного блока управления и обратно. Изоляция может быть повреждена вследствие механического воздействия, перетирания или даже просто от старости, когда она «лущится» кусками. Особенно актуально это для тех машин, которые эксплуатируются в условиях большой влажности и резких перепадов температуры окружающего воздуха.
Читайте также:  Как работает котел baxi

В случае, если существует возможность просто почистить корпус/резьбу/контакты датчика, то для восстановления его нормальной работы достаточно выполнить соответствующие мероприятия. Однако, если поврежден корпус, и/или выведен из строя внутренний терморезистор, то ремонт вряд ли возможен. В этом случае необходимо просто выполнить замену датчика на новый. Его цена невысока, а процесс замены несложный, и не займет много времени и усилий даже у начинающих автовладельцев.

Как проверить работоспособность датчика охлаждающей жидкости

Существует два основных метода проверки исправности датчика температуры охлаждающей жидкости. Первый — с его демонтажом, второй — прямо на посадочном месте в двигателе автомобиля. В свою очередь первый метод также можно разделить еще на два. Первый — с использованием термометра, второй — без него. Демонтаж датчика обычно можно сделать с помощью обыкновенного гаечного ключа подходящего размера, предварительно отсоединив контактные клеммы от него. Но перед тем как выполнить демонтаж датчика, необходимо убедиться, что на ДТОЖ подается питание. Обычно оно равно 5 Вольтам постоянного напряжения. Это можно легко выяснить, отсоединив от датчика его фишку, и с помощью мультиметра, переведенного в режим замера постоянного напряжения (с соответствующим диапазоном) щупами проверить значение напряжения. Если напряжение присутствует и имеет указанное значение, то можно выполнять дальнейшую проверку датчика охлаждающей жидкости.

Проверка датчика температуры на машине

Многих автолюбителей интересует вопрос о том, каким образом проверить датчик температуры охлаждающей жидкости, не снимая его с посадочного места, чтобы упростить работу и выполнить ее как можно быстрее. А делают это при помощи многофункционального тестера, измерив сопротивление между его выводными контактами, то есть, сопротивление его электрической обмотки.

Прямо на машине делают проверку ДТОЖ, отсоединив фишку от датчика, чтобы был нормальный доступ к его электрическим контактам (выводам). Обратите внимание, что если двигатель горячий, то работать нужно осторожно, чтобы не обжечься самому и не оплавить электронный мультиметр и/или его щупы! Далее с помощью мультиметра, переведенного в режим измерения сопротивления необходимо замерить это значение между его выводами. Как указывалось выше, на холодном двигателе значение будет достаточно высоко, а при горячем — ниже. В качестве примера приведем техническую информацию для автомобиля ВАЗ-2110, дающую общее понимание о значениях сопротивления. При этом необходимо понимать, что у других легковых машин (использующих датчики похожих моделей) эти значения будут очень похожими, то есть, критически не будут отличаться.

Температура воды, °С Значение сопротивления, Ом Температура воды, °С Значение сопротивления, Ом
+5 7280 +45 1188
+10 5670 +50 973
+15 4450 +60 667
+20 3520 +70 467
+25 2796 +80 332
+30 2238 +90 241
+40 1459 +100 177

Справедливости ради надо сказать, что ломаются датчики не так часто, но вместо этого встречаются ситуации, когда ДТОЖ «врет», то есть, выдает некорректную информацию. Поэтому можно сравнить показания температуры по приборной панели и сравнить их с полученным значением сопротивления. Если датчик таки выдает неверную информацию, то имеет смысл его демонтировать и провести дополнительную диагностику с помощью термометра и нагревательного прибора для воды.

Проверка с термометром

Итак, необходимо предварительно демонтировать датчик с его посадочного места на двигателе автомобиля. Обычно это не представляет больших сложностей, и выполняется с помощью гаечного ключа подходящего размера. Заодно можно выполнить профилактику его резьбы в патрубке, почистить и смазать ее, да и сам датчик тоже в случае, если он исправен и автовладелец не будет заменять его на новый.

Далее необходимо налить воду в электрический чайник или другой сосуд, но в этом случае нужно воспользоваться для нагрева воды в дальнейшем кипятильником. Также для работы вам понадобится электронный мультиметр, работающий в режиме измерения электрического сопротивления. Чувствительный элемент датчика необходимо поместить в нагреваемую воду, а к электрическим контактам обеспечить нормальный доступ с помощью щупов мультиметра. Также в воду поместить термометр (желательно электронный, поскольку он обеспечивает более высокую точность измерения и удобство получения соответствующей информации о температуре воды).

Далее нужно пошагово произвести измерения сопротивления датчика в соответствии с повышением температуры. Желательно это делать с интервалом в 5°С (например, +15°С, +20°С, +25°С и так далее). В результате у вас получится массив данных, который можно оформить в таблицу. Эти данные нужно сравнить с данными, которые имеются в технической документации конкретного автомобиля или, в крайнем случае, с таблицей, приведенной выше.

Естественно, что в процессе измерения допускаются некоторые некритические погрешности, которые будут зависеть, во-первых, от условий проведения опыта, а во-вторых, особенностей конкретного датчика, поскольку зачастую даже у датчиков одинаковой модели сопротивление будет незначительно отличаться при одинаковых условиях проведения измерений.

Проверка без термометра

Данный метод проверки датчика температуры охлаждающей жидкости мультиметром аналогичен предыдущему, однако для его проведения не нужно применять термометр. Так, необходимо довести воду до кипения и поместить в нее чувствительный элемент датчика. Далее аналогично необходимо измерить значение сопротивления на его выводных контактах. Как указывалось в приведенной выше таблице соответствующее значение должно быть приблизительно равно 177 Ом. Однако необходимо учитывать погрешность и допускать, что температура воды в момент измерения может быть на пару градусов ниже, поэтому и сопротивление чуть-чуть выше.

Как проверить датчик температуры на ВАЗ 2110

В целом, проверка датчика температуры охлаждающей жидкости на ВАЗ 2110, 2112, «Приоре», «Калине» и других аналогичных «Ладах» идентична процессам, описанным в предыдущих разделах. Как правило, на упомянутых ВАЗах используют датчики с артикулами 23.3828 и 405213, или их аналог — 423.3828. Для проверки этого датчика автовладельцам будет полезно знать его сопротивление при разных температурах:

  • сопротивление при 15°С — 4033…4838 Ом;
  • сопротивление при 128°С — 76,7…85,1 Ом;
  • выход напряжения при 15°С — 92,1…93,3%;
  • выход напряжения при 128°С — 18,1…19,7%.

Что касается демонтажа датчика для его дальнейшей проверки/замены, то это мероприятие необходимо начинать с того, что немного слить охлаждающую жидкость. Причем делать это необходимо, когда мотор холодный с тем, чтобы не получить ожог, и не повредить инструменты/детали двигателя. Для демонтажа вам понадобится гаечный ключ на 19 мм. С его помощью нужно отвернуть датчик и демонтировать его вместе с уплотнительным кольцом. Также не забывайте вовремя менять антифриз в системе охлаждения двигателем!

Измеряем сопротивления датчика с шагов в 10 градусов цельсия начиная от закипания воды в сосуде с ДТОЖ и до ее остывания к комнатной температуры. Результаты сверяем с табличными данными.

Заключение

Датчик температуры охлаждающей жидкости (или датчик температуры двигателя) — устройство несложное, и его проверка не составляет больших сложностей. Для этого необходимо лишь иметь инструменты для его демонтажа, а также электронный мультиметр, воду и нагревательный элемент. Что касается ремонта датчика, то в большинстве случаев его выполнять нецелесообразно, поскольку этот процесс не стоит потраченного времени и усилий, а цена датчика охлаждающей жидкости не такая высокая. Исключением может стать чистка его контактов от грязи и/или коррозии. В некоторых случаях это дает возможность восстановить работоспособность ДТОЖ.

Читайте также:  Как правильно покрыть машину воском на мойке

Преамбула или «откуда выросли ноги».

Я сделал свой собственный блок для управления вентиляторами охлаждения двигателя – дабы поддерживать на нужном уровне температуру двигателя. Понятно, что он в качестве исходной информации этот блок должен знать эту самую температуру. Отсюда и возник вопрос – а откуда ее брать. У меня Патриот 2007г издания, блок управления двигателем – Микас-11. В этом варианте штатно на корпусе термостата стоят два датчика температуры – двухконтактный, сигнал от которого идет в электронную систему управления двигателем (ЭСУД) и одноконтактный – от него работает показометр температуры на приборной панели. Использовать ни тот, ни другой мне не хотелось. Датчик для ЭСУД не хотелось использовать дабы не вносить своими ручонками погрешности в работу ЭСУД. Датчик показометра не хотелось использовать именно по причине его одноконтактности, то есть второй провод от него – это корпус двигателя. А весь мой предыдущий опыт конструирования электроники, работающей с исходными сигналами малого уровня, говорил что при использовании источника глухо сидящего своей сигнальной землей на корпусе, по которому могут течь неконтролируемые большие токи, проблема помех может оказаться плохоразрешимой. Еще одна причина для использования своего отдельного датчика – это желание отслеживать температуру двигателя после выключения зажигания, чтобы вентиляторами сгладить температурный выбег после прекращения циркуляции охлаждающей жидкости в системе. А в этом случае со штатных датчиков после выключения зажигания снимается питающее напряжение.
Итак я решил что у моей системы будет свой собственный датчик температуры. Казалось бы в этом случае он вообще может быть любым. Но мне хотелось чтобы это была более-менее распространенная стандартная деталь, дабы при выходе из строя ее можно было бы заменить купленной в магазине. Или даже если я применю что-то свое нестандартное, то такая замена на стандартную должна быть возможной (хотя бы на какое-то время) без всякого «напилинга», пусть с возможным некоторым ухудшением характеристик. И я обратил свой взор на датчики температуры, применяемые в ЭСУД отечественных двигателей. Все они конструктивно выполнены двухконтактными, электрически изолированными от корпуса – что мне и надо было.

С точки зрения электрической типов датчиков всего два – это полупроводниковая микросхема, изображающая из себя стабилитрон с положительным (и постоянным!) температурным коэффициентом, и терморезистор. Первый из этих типов называется 19.3828 или 42.3828 или 405226 в зависимости от производителя. Выглядит так:

Присоединительная резьба М12х1.5, разъем прямоугольный с плоскими контактами шириной 3.8мм. Интернет говорит о том что бывают и другие конструктивные варианты исполнения датчика с точно такими же электрическими характеристиками, но в жизни я их не видел.
Терморезистор же могут упаковывать в разные корпуса, отличающиеся разъемами (прямоугольный, более старый, и овальный, более современный) и присоединительной резьбой – метрическая М12х1.5 или коническая дюймовая К3/8” — итого четыре варианта, все (три точно есть) реально существуют (и нафига нужен был такой зоопарк – непонятно). Но наиболее распространенный имеет овальный разъем и резьбу М12х1.5. Маркировка такого датчика – 23.3828, 423.3828 или 405213 в зависимости от производителя. Вот он:

Есть довольно экзотический вариант такого датчика(423.3828) – в полностью пластиковом корпусе. Производит его калужское предприятие «Автотрейд». Производитель утверждает что такой вариант обладает более высоким быстродействием, нежели металлический. Я приложил некоторые усилия и купил пару таких датчиков. Вот:

Что меня интересовало.

Для всех этих двухконтактных датчиков производители косвенным образом нормируют точность в +-2С. Косвенным – потому что нормирован разброс электрических параметров при некоторой температуре, но если этот разброс пересчитать в температуру то и получается +-2С. В скобках замечу что для одноконтактного датчика для показометра (ТМ106-11) этот же параметр получается +-4С.
Но меня интересовал фактический разброс от экземпляра к экземпляру. Понятно что купить ради такого интересу по десятку штук каждого датчика (что было бы правильным на самом деле) кажется сумасшедствием, но по паре я купил.
Что больше интересовало – это быстродействие датчиков. Интерес этот появился через некоторое время после установки системы на автомобиле. При работе на холостом ходу температура гуляет в пределах трубы в 2-3С с периодом порядка 90 секунд. Причина следующая. Датчик установлен в трубе идущей от термостата в радиатор – на самом корпусе термостата для еще одного датчика в моем случае места не нашлось, да и не это главное по-видимому. Более существенно что при повышении температуры вентилятор начинает охлаждать ОЖ в радиаторе и проходит некоторое время, пока эта охлажденная порция ОЖ попадет в двигатель и охладит его, после чего снизится температура и на выходе из движка – лишь только тогда датчик «увидит» снижение температуры и уменьшит обороты вентилятора. А пока датчик не «увидел» снижения температуры – вентилятор продолжает охлаждать радиатор, в результате чего температура ОЖ излишне понижается. Ну и этот процесс весь повторяется. Дело известное в системах автоматического регулирования с обратной связью и в придачу с задержками в петле обратной связи. Известное, но вообще говоря считается не очень правильным иметь процесс регулирования с колебаниями. Понятно что задержек не избежать, но минимизировать их хочется, посему хотелось узнать характеристики датчиков по быстродействию.

Датчики запитывались через резистор 316 Ом от источника в 5 вольт и подключались ко входу АЦП. Оцифрованный сигнал записывался компьютером и потом в Excel’e полученные данные пересчитывались в температуру.
Датчики погружались в сосуд с водой по начало крепежного фланца. То есть вся резьбовая часть оказывалась в воде, а крепежный шестигранник – на воздухе. Сосудов было два – в одном вода комнатной температуры, в другом горячая. Горячая вода не термостабилизировалась – наливалась из чайника и постепенно остывала. Интерес представлял переходный процесс при переносе датчика из одного сосуда в другой.

На всех графиках по горизонтали шкала в секундах, по вертикали в градусах Цельсия.
Датчики 19.3828 (стабилитрон). Переходный процесс:

Разница в температурных показаниях не превышает 0.4С – но это фактически разрешающая способной моей измерительной аппаратуры для этого датчика. Постоянная времени переходного процесса (усреднено)

21 секунды. Практически одинаковое для обоих экземпляров. Для тех кто не в курсе – это время от начала воздействия «ступенькой» до достижения 63% (если быть точным то до 1 – 1/е) величины этой ступеньки.

Датчики 423.3828 в металлическом корпусе. Терморезистор.

Здесь на устоявшихся режимах температурная разница не превышает 0.2С (разрешение метода для этого типа датчика примерно 0.1С). А вот переходный процесс заметно разный по времени. Для датчика #1 (синяя кривая) постоянная времени составляет 18.3 секунд, для датчика #2 (лиловая кривая) – 27 секунд.

Читайте также:  Ротор датчика положения коленвала

Датчики 423.3828 в пластиковом корпусе. Тут, увы, у меня что-то сглюкнуло и большая часть данных потерялась. Удобоваримая осталась только вот эта часть.

То, что сначала графики идут не из одной температурной точки есть следствие их недостаточного охлаждения на предыдущей стадии эксперимента. А при их нагреве до устоявшегося состояния разница в показываемой температуре, как и в предыдущем случае, не превышает 0.2С. Подсчитанная постоянная времени для датчика #3 (синяя кривая) составляет 22.2 секунд, для датчика #4 (лиловая кривая) – 18.3 секунд.

Сторонник использования одноконтактного датчика (тот что для приборки) Александр kineskop утверждал, что этот одноконтактный датчик гораздо быстрее двухконтактных. Дабы проверить это утвеждение я купил один такой датчик (его тип – ТМ106-11) и испытал его.

Постоянная времени составляет 12.5 секунд. Действительно быстрее реагирует на изменение температуры. Но — абсолютная же погрешность этого конкретного датчика составляет -2С при температуре около 20С и -4С при температуре около 60С. Просто у меня есть достаточно точный образцовый термометр и, поскольку датчик этот я купил один, то решил сравнить его хоть с чем-нибудь.
Для более наглядного сравнения временных характеристик вышеупомянутых датчиков я свел процесс нагревания их в единые координаты. На них нулю температуры соответствует начало нагрева, а единице – максимальная температура нагрева. Масштаб же оси времени сохранен, но начало нагрева сведено в одну точку по времени. Вот что получилось.

Более подробно начальный участок.

Зеленая горизонтальная линия – уровень отсчета для постоянной времени(63%).

Меня заинтересовало почему у терморезисторов в металлическом корпусе такой разброс постоянной времени. Я один из датчиков распилил. И вот что увидел.

На фотке – корпус, пластиковый разъем с зажатым в нем терморезистором, уплотнительное резиновое кольцо и пленка-изолятор. На корпусе терморезистора было очень небольшое количество теплопроводящей пасты (капля) – я её стер в попытке увидеть написанный номинал терморезистора, но на нем никаких надписей не было. Латунное колечко на черном пластике – это отпиленная завальцовка.

Это фотка корпуса со вставленным в него уплотнительным кольцом и прозрачной пленкой изолятором. Пленка довольно жесткая и прилегает к стенкам корпуса она плохо. На пленке видны остатки термопасты, они только внутри пленки, между самой пленкой и стенкой корпуса никакой термопасты не было. То есть тепловой контакт между самим терморезистором и наружней стенкой корпуса во-первых плохой и во-вторых сильно зависит от того сколько термопасты положат и как хорошо будет прилегать пленка к корпусу. Вот и причина разброса постоянной времени скорости прогрева терморезистора. Но это еще не все.

На этой фотке я сложил пластиковую вставку с терморезистором и корпус рядом так, чтобы было видно насколько глубоко сидит терморезистор внутри корпуса. И видна полная фигня – терморезистор сидит на половине глубины всего датчика, причем хоть какой-то тепловой контакт он имеет лишь с боковой поверхностью корпуса датчика. То есть тепло от конца датчика должно доползти до середины и потом через плохо прилегающую изоляционную пленку и кое-как нанесенную термопасту уже дойти до собственно чувствительного элемента.
Мне стало совсем любопытно и я распилил датчик с микросхемой, изображающей термозависимый стабилитрон. Это оказалось заметно более трудоемкой задачей. Вот что я увидел.

Ребята, подскажите, пожалуйста — на что влияет цвет Датчика Температуры Охлаждающей Жидкости?
Родной стоял (и еще стоит) BOSCH 0 280 130 040 белый:

Смотрите также

Метки: дтож bosch 0 280 130 040 черный

Комментарии 19

а что будет если перепутать контакты на датчике?

у меня была похожая засада по цвету датчика оказывается что они могут довать разное сопротивление и у них в зависимости от топлевной ситемы и модификации двигателя на датчик может подоваться разное напряжение от3вольт до12 тоесть либо он згорает либо на его нехвотает мощности тока еще бывают датчики на которые подоется два плюса либо плюс минус вот тебе разница в цвете.

надо было оригинал заказывать, тогда бы и по цвету, и по номеру, и по качеству все сошлось 😉

был бы тоже бош, но в три раза дороже. интересно цена была бы оправдана? или переплата за имидж?

и где его взять-то? Если написано Бош, то маде ин … Врядли Боши будут до сих пор клепать такие датчки прошлого века…Скорее всего — высококачественные кЕтайские товары известных брендов, давно снятые с производства, но еще пользующиеся спросом, выпускаемые ПОД их же названием, чтобы их никто за это не поругал… Хорошо что они по 120-150 руб, не очень жаба душит…

тебе бы на лекции по экономике и зарубежному праву хотя бы вольным слушателем сходить, тогда мы бы вместе посмеялись над тобою написанным 😉

был бы тоже бош, но в три раза дороже. интересно цена была бы оправдана? или переплата за имидж?

меня пока оригинальные детали не подводили, а вот аналоги тех же фирм да! за исключением тех случаев, когда под аналогом приходят оригинальные детали со спиленными метками…

…где же ты нашел оригинал, знаток мировой экономики? Поверил тому, что в Экзисте рассказали/написали, что оригинал. …скептически отношусь к запчастям под грифом "оригинал"…неужели поставщики ВАГа будт до сих пор клепать железяки на 20-летние машины?

Синий — ВАГовский, а другие производители не заморачиваются. Главное — номер. У меня 3 датчика сменилось, 2 белых, 1 черный… Черный (не помню чей, но Дания) полгода работает, а белые по месяцу выдержали.

так часто вылетают?

видать как повезет, зависит от производителя…а вообще — это болячка у моновпрыска…

бывает еще синий 🙂

белый на мозг, черный на приборку. у них разные функции.

у меня на приборку 3-х контактный (большой) коричневого цвета

разницы нет какой цвет. этот датчик дает на мозги сигнал когда машина прогретая . Другими словами если датчик будет сломан, то машина на горячую не заведется. у меня такая трабла была

не совсем соглашусь — горячую заводится даже при снятой фишке с датчика.
у меня старый датчик имеет "провал" на 70-75 С градусах из-за чего мозги машины словив этот провал входят в аварийный режим. Можно после прогрева до 90 градусов снять клемму с АКБ и снова одеть через минуту- полторы и потом все ОК. Но сейчас похолодало и при поездках по городу часто приходится оставлять авто на 30-50 минут, она остывает ниже 70 градусов и постоянно вылазит ошибка.

НУ я не сказал что со снятой заводится, ну я был не прав чтоли хочешь сказать что датчик выходит из строя, и фишка одета на него, то не заведется? не знающий человек сразу не разберется что за проблема.

Главное — длинный номер 0 280 130 040. Он идентичен. Цвет разъема, думаю не на что не влияет в этом случае.

Оцените статью
Добавить комментарий

Adblock
detector