Октановое число изопропилового спирта

Детонационная стойкость и октановое число.
А теперь чуть подробнее остановлюсь на детонационной стойкости и всеми любимом октановом числе. Детонационная стойкость характеризует способность автомобильных и авиационных бензинов противостоять самовоспламенению при сжатии. Высокая детонационная стойкость топлив обеспечивает их нормальное сгорание на всех режимах эксплуатации двигателя. Процесс горения топлива в двигателе носит радикальный характер (вспомним химию и понятие «радикал»). При сжатии рабочей смеси температура и давление повышаются и начинается окисление углеводородов, которое интенсифицируется после воспламенения смеси. Если углеводороды несгоревшей части топлива обладают недостаточной стойкостью к окислению, начинается интенсивное накапливание перекисных соединений, а затем их взрывной распад. При высокой концентрации перекисных соединений происходит тепловой взрыв, который вызывает самовоспламенение топлива. Самовоспламенение части рабочей смеси перед фронтом пламени приводит к взрывному горению оставшейся части топлива, к так называемому детонационному сгоранию. Детонация вызывает перегрев, повышенный износ или даже местные разрушения двигателя и сопровождается резким характерным звуком, падением мощности, увеличением дымности выхлопа. На возникновение детонации оказывает влияние состав применяемого бензина и конструктивные особенности двигателя.

Показателем детонационной стойкости автомобильных и авиационных бензинов является октановое число. Это эмпирическая величина показывающая содержание изооктана (в % объемных) в смеси с н-гептаном, которая по детонационной стойкости эквивалентна топливу, испытуемому в стандартных условиях.
Смесь паров гептана с воздухом при сильном сжатии легко детонирует, поэтому качество гептана как топлива считается нулевым. Изооктан, будучи разветвленным углеводородом, устойчив к детонации, и его качество принимают равным 100. Октановое число определяют следующим образом. Готовят смесь из нормального гептана и изооктана, которая по своим характеристикам эквивалентна испытуемому бензину. Процентное содержание изооктана в этой смеси и есть октановое число бензина. Существуют горючие жидкости с более высокими антидетонационными характеристиками, чем изооктан. Добавки таких жидкостей позволяют получить бензин с октановым числом более 100. Для оценки октанового числа выше 100 создана условная шкала, в которой используют изооктан с добавлением различных количеств тетраэтилсвинца Pb(C2H5)4. Известно, что это вещество уже в очень малых концентрациях значительно повышает октановое число бензина. Зная, сколько тетраэтилсвинца надо добавить в бензин, чтобы повысить его октановое число на одну единицу, несложно приготовить из изооктана стандартные смеси с октановым числом 101, 102 и т.д.

В лабораторных условиях октановое число автомобильных и авиационных бензинов и их компонентов определяют на одноцилиндровых моторных установках УИТ-85 или УИТ-65. Склонность исследуемого топлива к детонации оценивается сравнением его с эталонным топливом, детонационная стойкость которого известна. Октановое число на установках определяется двумя методами: моторным (по ГОСТ 511—82) и исследовательским (по ГОСТ 8226—82).
Методы отличаются условиями проведения испытаний. Испытания по моторному методу проводят при более напряженном режиме работы одноцилиндровой установки, чем по исследовательскому. Поэтому октановое число, определенное моторным методом, обычно ниже октанового числа, определенного исследовательским методом.

Октановое число, полученное моторным методом в большей степени характеризует детонационную стойкость топлива при эксплуатации автомобиля в условиях повышенного теплового форсированного режима, октановое число, полученное исследовательским методом, больше характеризует бензин при работе на частичных нагрузках в условиях городской езды. Разницу между октановыми числами бензина, определенными двумя методами, называют чувствительностью бензина. Наибольшей чувствительностью (9-12 ед.) отличаются бензины каталитического крекинга и каталитического риформинга, содержащие непредельные ароматические углеводороды. Менее чувствительны (1-2 ед.) к режимам работы двигателя алкилбензин и прямогонные бензины, состоящие из парафиновых и изопарафиновых углеводородов.
Требования к детонационной стойкости бензинов зависят от конструктивных особенностей двигателя, определяющими среди которых являются степень сжатия и диаметр цилиндра.
Детонационная стойкость автомобильных и авиационных бензинов определяется их углеводородным составом. Наибольшей детонационной стойкостью обладают ароматические углеводороды. Самая низкая детонационная стойкость у парафиновых углеводородов нормального строения, причем она уменьшается с увеличением их молекулярной массы. Изопарафины и олефиновые углеводороды обладают более высокими антидетонационными свойствами по сравнению с нормальными парафинами. Увеличение степени разветвленности и снижение молекулярной массы повышает их детонационную стойкость. По детонационной стойкости нафтены превосходят парафиновые углеводороды, но уступают ароматическим углеводородам. Наибольшую чувствительность — разность между октановыми числами по исследовательскому и моторному методам — имеют олефиновые углеводороды. Чувствительность ароматических углеводородов несколько ниже. Для парафиновых углеводородов эта разница очень мала, а высокомолекулярные низкооктановые парафиновые углеводороды имеют отрицательную чувствительность.
Антидетонационные свойства бензинов, получаемых различными технологическими процессами, определяются входящими в их состав углеводородами. Самую низкую детонационную стойкость имеют бензины прямой перегонки, состоящие, в основном, из парафиновых углеводородов нормального строения, причем она снижается с повышением температуры конца кипения. Октановые числа, определяемые по моторному методу, прямогонных фракций, выкипающих до 180 °С, обычно составляют 40—50 ед. Детонационная стойкость фракций с температурой начала кипения 85 °С несколько выше — 65—70 ед. Исключение составляют прямогонные бензины, получаемые из нефтей нафтенового основания (сахалинские, азербайджанские и др.), их октановые числа достигают 71—73 ед.
Для повышения октановых чисел прямогонных бензинов их подвергают каталитическому риформингу.
Октановые числа бензинов каталитического риформинга зависят от жесткости режима процесса. При жестком режиме они достигают ОЧИ — 95-99 (исследовательский метод) и ОЧМ = 86-90 (моторный метод), при мягком режиме соответственно 83—85 и 74—79.
Бензины термических процессов (крекинга, коксования) содержат до 60 % олефиновых углеводородов и по детонационной стойкости превосходят прямогонные бензины: ОЧИ = 68-75, ОЧМ = 62-69. Бензины каталитического крекинга помимо олефиновых углеводородов содержат ароматические и изопарафиновые углеводороды. Их детонационная стойкость выше, чем бензинов, получаемых термическими процессами.

Способы повышения октанового числа.
Повышать детонационную стойкость топлив можно несколькими способами.
Первый способ – использование бензинов каталитического крекинга и риформинга (дорого, надо вкладываться в реконструкцию производственных мощностей).

Второй способ повышения ОЧ заключается в добавлении в базовые бензины высокооктановых компонентов, таких, как изооктан, алкилбензин и др., которые обладают ОЧ по моторному методу около 100 ед. Таких компонентов добавляют в базовый бензин до 40 %, значительно повышая его детонационную стойкость.

Третьим и наиболее простым способом повышения детонационной стойкости топлив является добавление к ним антидетонаторов, т.е. химических соединений, которые при очень незначительной их концентрации в топливе (десятые доли грамма на 1 кг топлива) существенно увеличивают его детонационную стойкость.
Действие антидетонационной присадки основано на замедлении процесса образования гидроперекисей и перекисей и их расщепления.

Читайте также:  Углы работы карданной передачи

Соединения свинца
Наиболее эффективными и дешевыми антидетонационными присадками являются органические соединения свинца — тетраэтилсвинец (ТЭС) и тетраметилсвинец, причем первый получил большее распространение. ТЭС представляет собой густую бесцветную и ядовитую жидкость с температурой кипения 200°С. ТЭС хорошо растворяется в углеводородах и плохо в воде. Он ингибирует образование перекисных соединений в топливе, понижая вероятность детонации. Способность ТЭС повышать антидетонационные свойства топлив была открыта в 1921 году, а уже два года спустя ТЭС стали интенсивно производить в промышленности.
ТЭС не применяют в чистом виде, поскольку образующийся металлический свинец осаждается на стенках цилиндров двигателя, что приводит к отказу последнего. По этой причине в смеси с ТЭС вводят так называемые выносители, которые образуют с металлическим свинцом летучие соединения. Выносители обычно представляют собой хлор- или бромсодержащие соединения. Смесь ТЭС и выносителя называют этиловой жидкостью, а бензин, содержащий добавки этиловой жидкости, — этилированным.
Этиловая жидкость очень эффективна в повышении антидетонационных свойств топлив. Добавка долей процента этиловой жидкости в бензин позволяет увеличить его октановое число на 5—10 пунктов. Самая эффективная концентрация ТЭС составляет 0,5—0,8 г на 1 кг бензина. Более высокие концентрации ведут к повышению токсичности топлива, тогда как детонационная стойкость возрастает незначительно. С ростом содержания ТЭС также может снижаться надежность работы двигателя из-за накопления свинца камере сгорания. Если в топливе содержится сера, то эффективность ТЭС резко снижается, поскольку образующийся сернистый свинец препятствует разложению перекисей. При хранении этилированных бензинов их детонационная стойкость уменьшается в результате разложения ТЭС. Этот процесс ускоряется при наличии в топливе воды, осадков, смол, хранении при повышенной температуре и др. Кроме того, ТЭС повышает токсичность, меняет температуру сгорания топлива, что приводит к закоксовыванию поршневых колец, клапанов и отложениям на стенках цилиндров.
Антидетонаторы на основе ТЭС в Российской Федерации запрещены ГОСТ Р 51105-97, который регламентирует производство только неэтилированных бензинов. В Европе и других развитых стран от ТЭС также отказались с введением норм Euro 2.

Соединения марганца
В качестве антидетонационных присадок эффективны два соединения на основе марганца: циклопентадиенилтрикарбонилмарганец (ЦТМ) C5H5Mn(CO)3 и метилциклопентадиенилтрикарбонилмарганец (МЦТМ) СH3C5H4Mn(CO)3. Первый представляет собой кристаллический порошок желтого цвета, второй — прозрачную маловязкую жидкость янтарного цвета с травянистым запахом, температурой кипения 233°С, плотностью 1,3884 г/см3 и температурой застывания 1,5°С. МЦТМ хорошо растворим в бензине и практически нерастворим в воде.
Оба эти соединения мало отличаются по эксплуатационным свойствам и имеют примерно одинаковую эффективность. В пересчете на общее количество присадок марганцевые соединения не отличаются по эффективности от ТЭС, однако в пересчете на содержание металла они эффективнее. При этом токсичность марганцевых присадок в 300 раз ниже. Их недостатком, однако, является разложение на свету, что ведет к потере антидетонационных свойств. Несмотря на высокую эффективность их применение ограничено требованиями экологичности.

Соединения железа
В качестве антидетонаторов представляют интерес пентакарбонил железа, диизобутиленовый комплекс пентакарбонила железа и ферроцен. Эффективность пентакарбонила железа Fe(CO)5 была обнаружена в 1924 году. Он представляет собой светло-желтую жидкость с характерным запахом (плотность 1,457 г/см3, температура кипения 102,2°С, температура плавления 20°С). Его применяли в 1930-е годы в Германии в концентрации 2-2,5 мл/кг. Затем, однако, его использование было прекращено ввиду того, что при его сгорании образовывались оксиды железа, нарушавшие работу свечей зажигания. При этом увеличивался износ стенок цилиндра двигателя. Прирост октанового числа в случае Fe(CO)5 на 15-20% ниже, чем при использовании этиловой жидкости. Его недостатком также является склонность к быстрому разложению на свету до нерастворимого карбонила Fe(CO)9.
Диизобутиленовый комплекс пентакарбонила железа [Fe(CO)5]3[C8H16]5 представляет собой жидкость с плотностью 0,955 г/см3 и температурой кипения 27-32°С, хорошо растворимую в бензине. По антидетонационной стойкости он близок пентакарбонилу железа.
Ферроцен (С5H5)2Fe — это легковоспламеняющийся кристаллический порошок оранжевого цвета (температура плавления 174°С, кипения 249°С, разложения 474°С). Он полностью растворим в бензине и обладает большей антидетонационной стойкостью, чем другие соединения железа. Ферроцен и его производные можно использовать в составе бензинов всех марок при концентрации железа не более 37 мг/мл. Железосодержащие присадки способны увеличить октановое число на 3—6 единиц. Концентрацию ферроцена ограничивают по двум причинам. Во-первых, из-за образования окислов железа, которые остаются в виде нагара на частях двигателя образуя «ржавый» нагар в цилиндрах, способствуют выходу из строя свечей, а также накапливаются в масле. Во-вторых, из-за повышения склонности бензина к смолообразованию.

Соединения азота
Анилин С6H5NH2 представляет собой бесцветную маслянистую жидкость с температурой кипения 184°С и температурой плавления -6°С. Анилин является ядовитым соединением и обладает ограниченной растворимостью в бензине. На воздухе он окисляется и темнеет. При низких температурах смеси анилина с бензином подвержены расслоению, поэтому в чистом виде анилин как антидетонатор не применяется.
Ароматические амины обладают высоким антидетонационным эффектом, но к применению допущен только монометиланилин (N-метиланилин) — С6H5NHCH3. Он представляет собой маслянистую жидкость желтого цвета с плотностью 0,98 г/см3, растворимую в бензинах, спиртах и эфирах. Октановое число по исследовательскому методу 280-350. Однако ароматические амины обладают существенным недостатком — они склонны к смолообразованию и влекут увеличение износа деталей двигателя.
Независимо от химической природы антидетонатора его концентрация в топливе по той или иной причине ограничена, что ведет к ограниченному приросту октанового числа. Кроме того, прирост октанового числа нелинейно зависит от концентрации добавки и для каждого антидетонатора существует максимальная концентрация, выше которой он уже не проявляет дополнительного эффекта.

Вопрос "чем кормить любимого железного коня" есть и остаётся весьма архи-актуальным. Учитывая неадекватную (иначе и не скажешь) ситуацию с бензином на российских АЗС, заправка бензином часто превращается в своего рода "русскую рулетку".

Тогда же и стал заправляться 92-ым с 5% добавкой спирта (изопропанол).

Не утихают и споры в инете о последствиях спиртовой диеты для автомобилей, спорят и автолюбители и эксперты. И у всех свои аргументы, доводы или опыт.

От себя добавлю, что не так страшен спирт, как его порой малюют. Несколько лет эксплуатации сначала "Самары", и вот почти год "Шевроле" на смеси 92-го бензина и абсолютизированного изопропилового спирта тому в подтверждение.

Читайте также:  Уаз хантер тюнинг салона фото

Вообще-то наличие спиртов (оксигенатов) в моторном топливе согласно европейским стандартам вполне нормальное, рядовое явление:

Такие вот европейские требования к составу бензинов…

Добавляют ли у нас спирт в бензин — хороший вопрос. У нас, как правило, спирту находят более прозаическое применение. Зато льют что подешевле. Как-то мне довелось отдать на хроматографический анализ зимний сорт 95-ого бензина, на котором вдруг стал глохнуть движок после прогрева. Результат шокировал, там было до 50% изопентана, которого, если верить энциклопедии ( www.xumuk.ru/encyklopedia/2/3221.html ) не должно быть больше 15%, а вот спиртов не было и в помине.

Раз "Спасение утопающих — дело рук самих утопающих", то выход такой: самому себе "бодяжить" топливо. Покупаешь 92-ой (его вроде должны меньше подделывать) и добавляешь спирт. Какой спирт и сколько? Этиловый спирт ( он же этанол, он же пищевой) в чистом, безводном виде практически простому автовладельцу не достать. К тому же на Руси к нему отношение как к продукту первой необходимости, а не топливу (не считая спиртовок, спирт для которых охраняется сейфами и злобными лаборантами). А вот абсолютизированный изопропанол (изопропиловый спирт) вполне реально купить. Сейчас его можно найти за 60-70 руб/литр, если брать у оптовиков. В "Самару" я лил из расчёта 1 литр на 20 литров 92-го бензина (5 об%) в "Шевроле" пока после обкатки 1 литр на 50 литров, т.е. 2 об%. Особой заметной разницы ни по расходу горючего, ни по приросту мощности не наблюдалось, но и проблем по топливной причине не было. Хотя я, конечно, экспериментов в стиле "Разрушителей легенд" с замерами всего и вся ДО и ПОСЛЕ инъекций спирта не проводил. Но зато есть замеры с результатами содержания СО/СН при проходе ГосТО для "Самары" после спиртовой диеты.

Мировой топливный кризис, из-за которого подскочили цены на бензин и дизтопливо, вновь заставляет задуматься об иных источниках энергии для транспортных средств. Неплохая альтернатива традиционному топливу – спирт. Чем хорош такой заменитель и что сделать, чтобы автомобильный двигатель смог на нем работать?

Мировой топливный кризис, из-за которого подскочили цены на бензин и дизтопливо, вновь заставляет задуматься об иных источниках энергии для транспортных средств. Неплохая альтернатива традиционному топливу – спирт. Чем хорош такой заменитель и что сделать, чтобы автомобильный двигатель смог на нем работать?

Мировой топливный кризис, из-за которого подскочили цены на бензин и дизтопливо, вновь заставляет задуматься об иных источниках энергии для транспортных средств. Неплохая альтернатива традиционному топливу – спирт. Чем хорош такой заменитель и что сделать, чтобы автомобильный двигатель смог на нем работать?

Спирт обладает целым рядом преимуществ по сравнению с нефтяным топливом, и только большая стоимость, малая теплоотводность, высокая гигроскопичность и повышенное содержание альдегидов препятствуют его массовому применению в качестве топлива для ДВС. А достоинства спирта следующие.

Высокие антидетонационные свойства (октановое число – более 100). Введение этанола в бензин обеспечивает повышение октанового числа. Каждые 3% этанола в смеси с бензином обеспечивают повышение октанового числа горючего в среднем на 1 единицу. То есть спирт может быть использован в качестве высокооктановой добавки к топливу. Он повышает и детонационную стойкость горючего, так как температура самовоспламенения чистого бензина составляет 290°С, а его смеси с этанолом – 425°С.
Процесс испарения начинается во впускном трубопроводе и заканчивается в цилиндре при ходе сжатия, обеспечивая охлаждение деталей двигателя – поршней и клапанов – и более полное наполнение цилиндров свежим зарядом (компрессорный эффект с 5-процентным увеличением мощности).
Надежное воспламенение от электрической искры при значительных изменениях состава горючей смеси (диапазон воспламеняемости по коэффициенту избытка воздуха для спирта составляет примерно 0,4…1,7).
КПД двигателя, работающего на чистом спирте, выше, чем при использовании бензина.
Меньшая токсичность отработавших газов.
Низкая пожароопасность.

Адаптация ДВС

Существуют два способа применения спирта в качестве горючего для автомобильных моторов – при частичной (до 20%) и при полной замене бензина и дизельного топлива. Высокие антидетонационные качества определяют преимущественное использование спирта в двигателях внутреннего сгорания с принудительным (искровым) зажиганием. Стандартный двигатель не нужно переделывать для работы на бензо-спиртовой смеси.

На АО «АвтоВАЗ» были проведены испытания бензина АИ-95 с 10-процентным содержанием этанола на токсичность, расход топлива и обеспечение динамики автомобиля без перерегулировки двигателя. Было установлено, что добавка к бензину 10% спирта приводит к обеднению топливовоздушной смеси и незначительно ухудшает ездовые качества машины практически на всех режимах движения. При переходе на АИ-95Э с 10-процентным содержанием этанола требуется перерегулировка карбюратора.

Согласно результатам стендовых испытаний «АвтоВАЗа», применение бензина АИ-95Э с 5-процентным содержанием спирта не приводит к ухудшению эксплуатационных характеристик автомобиля и не требует изменения исходных регулировок двигателя.

А вот для работы на чистом спирте требуется увеличение вместимости топливного бака и степени сжатия до 12 – 14 ед. (чтобы полностью использовать детонационную стойкость топлива) и перерегулировка карбюратора или перепрограммирование ЭБУ инжекторного двигателя. Горючую смесь необходимо немного обогатить: для сгорания 1 кг спирта требуется 9 кг воздуха, а для сгорания 1 кг бензина – 14,93 кг.

Низкое давление насыщенных паров и высокая теплота испарения спирта делают практически невозможным запуск бензиновых двигателей уже при температуре окружающей среды ниже +10°С. Для улучшения пусковых качеств в спирт добавляют 4 – 6% изопентана (С5Н12) или 6 – 8% диметилового эфира (СН3-О-СН3 или С2Н6О), что обеспечивает нормальный пуск двигателя при температуре от –25°С и выше. Для этой же цели спиртовые моторы оборудуют специальными пусковыми подогревателями. В случае неустойчивой работы двигателя при повышенных нагрузках (из-за плохого испарения спирта) применяется дополнительный подогрев топливной смеси с помощью, например, отработавших газов.

Дизель и спирт

Адаптировать дизельный мотор для сжигания в его цилиндрах спирта гораздо сложнее. Венским техническим университетом были проведены экспериментальные исследования на 4-цилиндровом тракторном дизеле фирмы Steyr.

Ввиду того, что цетановое число этанола низкое, двигатель был дополнительно оснащен электронной системой зажигания, а головку цилиндров модернизировали для размещения свечей зажигания. Кроме того, была изменена геометрическая форма камеры сгорания в днище поршня, установлены новые топливный насос высокого давления, форсунки и топливоподкачивающий насос повышенной производительности. Исследования показали, что дизель работает на этаноле практически бездымно. По сравнению с работой на дизельном топливе выброс NOx снижается, что является результатом уменьшения температуры вследствие повышенной теплоты испарения этанола. Выброс СО такой же, как у бензинового ДВС, выброс СН относительно высок, однако может быть радикально снижен при применении простейшего окислительного нейтрализатора. При переходе на дизельное горючее дымность и расход топлива у переоборудованного дизеля значительно выше, чем первоначально. Объемный расход у этанола почти в 2 раза больше, чем у дизельного топлива, что является следствием его более низкой теплоты сгорания, а удельный приведенный расход лишь немногим выше.

Читайте также:  Прокладка гбц своими руками

Модернизировать двигатель могут не только автопроизводители, но и специализированные фирмы. Например, в США бензиновые двигатели и дизели для работы на альтернативном топливе переоборудует фирма Jasper Engines and Transmissions. Переделываются моторы от 8-цилиндровых V-образных до рядных 6- и 4-цилиндровых. После переоборудования двигатели могут работать на метаноле, этаноле, сжатом и сжиженном природном газах.

Мировой опыт

Идея использования спирта в качестве топлива не нова. Самый богатый опыт его применения в ДВС имеет Бразилия. После мирового нефтяного кризиса 1973 – 75 годов в этой стране в начале 80-х приняли программу «Топливо на основе этанола». В результате здесь до конца прошлого столетия этанол ежедневно заменял до 250 тыс. баррелей импортируемой нефти. В 90-х годах в Бразилии этиловый спирт служил горючим более чем для 7 млн. машин, а его смесь с бензином (газохол) – для еще 9 млн. авто. Этанол в этой стране изготавливают из сахарного тростника, а продают через заправочную сеть, насчитывающую 25 тысяч станций.

Вторым мировым лидером по использованию этанола в автотранспорте являются США. Здесь также реализуется программа замены бензина спиртом, который получают при переработке излишков кукурузы и других зерновых культур. Чистый этанол в этой стране используется как горючее в 21 штате, а на бензоэтаноловую смесь приходятся 10% топливного рынка США.

Раньше заинтересованность в использовании более дорогого этанола ($60 за баррель) в качестве моторного горючего за рубежом была обусловлена налоговыми льготами. В США они компенсируют продавцам убыток в случае, если те продают этанол по цене бензина. Сейчас, после скачка цен на нефть ($40 – 50 за баррель), с учетом переработки сырья для получения бензина, стоимость этих видов топлива практически сравнялась. Поэтому использование спирта оказалось еще целесообразнее.

Применение спирта в качестве топлива получило поддержку и в некоторых европейских странах – в частности, Франции и Швеции. 7 ноября 2001 года две комиссии ЕС приняли так называемые биодирективы относительно использования биотоплива в странах Евросоюза. Они предусматривают обязательное применение этого горючего как добавки к бензину в будущем.

Топливный спирт

Этанол (С2Н5ОН) – винный, или питьевой спирт, являющийся важнейшим представителем одноатомных спиртов. Эта бесцветная жидкость, которая смешивается в любых соотношениях с водой, спиртами, эфирами, глицерином, бензином и другими органическими растворителями, горит бесцветным пламенем. Этанол, обладая высоким октановым числом и энергетической ценностью, является отличным моторным топливом. Для получения бензина АИ-95 требуется добавить в бензин АИ-92 около 10% этанола.

Метанол (СН3ОН), или древесный спирт – простейший представитель предельных одноатомных спиртов, бесцветная подвижная жидкость с характерным запахом. Смешивается с водой во всех соотношениях, а также с другими спиртами, бензолом, ацетоном и другими органическими растворителями. Основной способ производства метанола – синтез из водорода и оксида углерода. Сырьем для этого служат природный, коксовый и другие газы, содержащие углеводороды (например, синтез-газ), а также кокс, бурый уголь, древесина, сланцы, биомасса и др.

Характеристики рабочего процесса дизеля при работе на смеси дизтоплива с этанолом и при работе на чистой солярке

Из приведенных данных хорошо видно, что введение спирта в дизельное топливо приводит к росту давления (Р) в ВМТ более чем на 20%. Резко увеличивается скорость нарастания давления, т. е. возрастает жесткость работы двигателя. Горение этанольного топлива начинается раньше. При этом момент на валу двигателя снижается. Иными словами, введение этилового спирта в дизельное топливо ухудшает его технико-экономические показатели. Однако при этом несколько улучшаются экологические показатели работы мотора. Для получения максимального эффекта от введения спирта в дизельное топливо необходимо провести регулировку двигателя.

Украинские перспективы

В конце июня 2000 года Правительственный комитет по реформированию аграрного комплекса и проблемам экологии одобрил проект государственной программы «Этанол: 2000 – 2010», а также «Программу государственной поддержки развития нетрадиционных и возобновляемых источников энергии и малой гидро- и теплоэнергетики», разработанной в соответствии с Указом Президента Украины № 285 от 2 апреля 1997 года. Кабинет Министров Украины постановлением № 1044 от 4.07.2000 года программу «Этанол» утвердил. Документ предусматривает ускоренный перевод примерно трети автопарка на газохол и этанол.

Ресурсы по производству этанола в нашей стране практически неисчерпаемы: из отходов сельского хозяйства, главным образом свекловодства, и переработки импортного тростникового сахара-сырца ежегодно производится свыше 5,5 миллиона декалитров этанола и 300 – 310 тысяч декалитров технических спиртов. Мощности украинских предприятий позволяют выпускать 66 миллионов декалитров таких спиртов в год. В середине июня этого года Украина договорилась с Кубой об увеличении бартерных (в обмен на промышленные изделия) поставок тростникового сырца. По оценкам кубинских специалистов, около 25% этого сырья может использоваться исключительно для производства спиртового и спирто-нефтяного топлива. Программа «Этанол» предусматривает, в частности, перепрофилирование более трети мощностей украинских спиртовых и смежных (перерабатывающих сахарное сырье) заводов на выпуск высокооктановых кислородосодержащих добавок к бензину и техническому спирту – в основном из сельскохозяйственного сырья. Эксперты оценивают это как наиболее перспективное и экономически выгодное решение.

Подготовил Юрий Герасимчук
Фото Сергея Кузьмича

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Оцените статью
Добавить комментарий

Adblock detector