Передаточное число червячной передачи формула

Принцип действия и область применения. Червячная передача (рисунок 11.19) относится к передачам зацепления с перекрещивающимися осями валов. Угол перекрещивания обычно равен 90°. Движение в червячных передачах преобразуется по принципу винтовой пары или по принципу наклонной плоскости. Червячная передача состоит из винта, называемого червяком (рисунок 11.20), и зубчатого колеса, называемого червячным колесом (рисунок 11.22). При вращении червяка вокруг своей оси его витки перемещаются вдоль образующей своей цилиндрической поверхности и приводит во вращательное движение червячное колесо. Червяк и червячное колесо изготовляются методом нарезания зубьев при помощи специального инструмента из целых заготовок. В червячной передаче так же, как и в зубчатой, имеются диаметры делительных цилиндров (рисунок 11.19): d1 – делительный диаметр червяка, d2 делительный диаметр червячного колеса. Точка касания делительных диаметров называется полюсом зацепления.

Рисунок 11.19 – Схема червячной передачи.

Достоинства червячных передач:

1. Возможность получения большого передаточного числа в одной ступени (i = 8 – 200).

2. Плавность и бесшумность работы.

3. Компактность (малые габариты).

4. Самоторможение (невозможность передачи вращающего момента от червячного колеса к червяку).

5. Демпфирующие свойства снижают уровень вибрации машин.

Недостатки червячных передач:

1. Значительное трение в зоне зацепления.

2. Нагрев передачи.

Червячные передачи используются в устройствах с ограниченной мощностью (обычно до 50 кВт).

Рисунок 11.20 – Червяки.

Червячные передачи применяют в механизмах деления и подачи зуборезных станков, продольно-фрезерных станков, глубоко расточных станков, грузоподъемных и тяговых лебедках, талях, механизмах подъема грузов, стрел и поворота автомобильных и железнодорожных кранов, экскаваторах, лифтах, троллейбусах и других машинах.

Червяки. По форме поверхности, на которой нарезается резьба, различают – цилиндрические (рисунок 11.20, а) и глобоидные (рисунок 11.20, б) червяки. По форме профиля резьбы – с прямолинейным (рисунок 11.21, а) и криволинейным (рисунок 11.21, б) профилем в осевом сечении. Чаще применяют цилиндрические червяки. У червяков с прямолинейным профилем в осевом сечении в торцовом сечении витки очерчены архимедовой спиралью, поэтому называют архимедов червяк, который подобен ходовому винту с трапецеидальной резьбой.

Эвольвентные червяки имеют эвольвентный профиль в торцовом сечении и поэтому подобны косозубым эвольвентным колесам, у которых число зубьев равно числу заходов червяка. Основные геометрические параметры червяка: = 20° -профильный угол (в осевом сечении для архимедовых червяков и в нормальном сечении зуба с нарезкой эвольвентного червяка); р – шаг зубьев червяка и колеса, соответствующий делительным окружностям червяка и колеса; т=осевой модуль; z1. – число заходов червяка; – коэффициент диаметра червяка; – угол подъема винтовой линии ; d1=qm – диаметр делительной окружности (здесь и далее см. рисунок 11.21); da1 = d1 + 2m – диаметр окружности выступов; dfl = d1 2,4m – диаметр окружности впадин; b1 длина нарезанной части червяка, ее определяют по условию использования одновременного зацепления наибольшего числа зубьев колеса [при z1 = 1. 2 b1>(11 + 0,06z2)m при z1 = 4 b1 (12,5 + 0,09z2)m].

Рисунок 11.21 – Форма профиля резьбы червяка и основные геометрические параметры

По стандарту, z1 = 1; 2; 4. Рекомендуют: z1= 4 при передаточном отношении i = 8 – 15; z1 = 2 при i = 15 – 30; zг = 1 при i ≥ 30.

Значения m и q стандартизованы.

Червячные колеса. При нарезании без смещения (рисунок 11.22):

d2 = z2m – диаметр делительной окружности в главном сечении;

da2 = d2 + 2m – диаметр окружности выступов в главном сечении;

df2 = d2 2,4m – диаметр окружности впадин в главном сечении;

В таблице 11.3 размеры b2 ширина червячного колеса и daM2 наибольший диаметр колеса, соответствующие углу обхвата червяка колесом 2δ = 100° для силовых передач:

z1
daM2 ≤dа2+2т ≤dаг+1,5т ≤da2+m
b2 ≤0,75da1 ≤0,67dal

Примечание. Число зубьев колеса из условия неподрезания принимают:

Точность изготовления. Для червячных передач стандартом предусмотрено двенадцать степеней точности. Для передач, от которых требуется высокая кинематическая точность, рекомендуют III, IV, V и VI степени точности; для силовых передач рекомендуют V, VI, VII, VIII и IX степени точности.

Рисунок 11.22 – Основные геометрические параметры червячного колеса

Передаточное отношение. В червячной передаче в отличие от зубчатой окружные скорости v1 и v2 не совпадают (см. рис. 11.23). Они направлены под углом 90° и различны по величине, относительном движении делительные цилиндры не обкатываются как у зубчатых цилиндрических и конических передачах, а скользят. При одном обороте червяка колесо повернется на угол, охватывающий число зубьев колеса, равное числу заходов червяка. Колесо сделает полный оборот при оборотов червяка, то есть

(11.65)

Так как z1 может быть равным 1, 2 или 4 (чего не может быть у шестерни), то в одной червячной паре можно получить большое передаточное отношение.

Скольжение в зацеплении. При движении витки червяка скользят по зубьям колеса, как в винтовой паре. Скорость скольжения vs направлена по касательной к винтовой линии червяка. Как относительная скорость она равна геометрической разности абсолютных скоростей червяка и колеса, которыми являются окружные скорости vl и v2 (см. рис. 11.19 и рис. 11.23); или , при этом

Рис. 11.23. Схема определения скорости скольжения

где – угол подъема винтовой линии червяка. Так как Z 1

0,7.. .0,75 0,75.. .0,82 0,87.. .0,92

После определения размеров передачи КПД уточняют расчетом.

Силы в зацеплении. В червячном зацеплении (см. рис. 11.24) действуют: окружная сила червяка Ft1, равная осевой силе червяка Fa2,

Читайте также:  Устройство карбюратора к 131

(11.69)

(11.70)

(11.71)

(11.72)

В осевой плоскости силы Ftz и Fr являются составляющими Fn = Fncos(проекция нормальной силы на осевую плоскость). Т1 момент на червяке, Т2 — момент на колесе:

Т2(11.73)

Основные критерии работоспособности и расчета. Червячные передачи рассчитывают по напряжениям изгиба и контактным напряжениям. Здесь чаще наблюдается износ и заедание. Это связано с большими скоростями скольжения и неблагоприятным направлением скольжения относительно линии контакта. Для предупреждения заедания применяют специальные антифрикционные пары материалов: червяк — сталь, колесо — бронза или чугун.

Рис. 11.24. Силы в червячном зацеплении

Интенсивность износа зависит от контактных напряжений. Основной расчет ведут по контактным напряжениям. Расчет по напряжениям изгиба выполняется как проверочный.

Расчет по контактным напряжениям. Уравнение

(11.74)

применяют и для расчета червячных передач. Для архимедовых червяков радиус кривизны витков червяка в осевом сечении ρ1 = . Тогда по формуле (11.8) с учетом уравнения (11.20) получим

(11.75)

По аналогии с косозубой передачей, удельная нагрузка червячных передач

(11.76)

где – суммарная длина контактной линии (см. рис. 11.22); α= 1,8. 2,2 – торцовый коэффициент перекрытия в средней плоскости червячного колеса; ≈ 0,75 – коэффициент, учитывающий уменьшение длины контактной линии в связи с тем, что соприкосновение обеспечивается не по полной дуге обхвата 2δ. После подстановки в формулу (11.74) получим

(11.77)

Для проектного расчета (11.77) решают относительно , заменяя и принимая , Кн=1,1, , , При этом

(11.78)

(11.79)

произведем расчет по формуле (11.78) относительно межосевого расстояния

(11.80)

В формулах (11.77)…(11.80) , где Е1 и Е2 – модули упругости материалов червяка и колеса: – сталь; – бронза, чугун. При проектном расчете отношением , задаются. Для силовых передач принимают = 0,22…0,4.

Расчет по напряжениям изгиба. На изгибную прочность рассчитывают только зубья колеса, так как витки червяка по материалу прочнее зубьев колеса. В расчетах червячное колесо рассматривают как косозубое. В формулу (11.32) вводят следующие поправки и упрощения.

1. По своей форме зуб червячного колеса прочнее зуба косозубого колеса (примерно на 40%). Это связано с дуговой формой зуба. Особенности формы зуба червячных колес учитывает коэффициент формы зуба , который выбирают по справочникам в зависимости от эквивалентного числа зубьев.

2. Червячная пара хорошо прирабатывается. Поэтому принимают и (см. формулу (11.34)) и, далее,

Тогда формулу (11.32) можно записать в виде

(11.81)

где уF коэффициент формы зуба, который выбирают по эквивалентному числу зубьев колеса ; нормальный модуль тп = mcos(здесь т – осевой модуль); KF коэффициент расчетной нагрузки.

Для червячных передач принимают Кн = KF = Kv Кβ, где Kv коэффициент динамической нагрузки; К коэффициент концентрации нагрузки. При сравнительно высокой точности изготовления принимают Кv=1при vs 3 м/с.

При постоянной внешней нагрузке Кβ =1; при переменной нагрузке Кβ = 1,05. 1,2 – большие значения при малых q и больших z2.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8758 — | 7493 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Многие покупатели перед выбором червячного редуктора или вовремя, сталкиваются с проблемой не знания, какое именно передаточное число им нужно. Эта статья Вам поможет с этим разобраться.

Во-первых, нужно правильно понимать два понятия – это номинальное передаточное число (отношение) и фактическое. Первое обозначение придумано для округления значений по факту и стандартизации числовых показателей. К примеру, червячный редуктор Ч 100 имеет фактически передаточное отношение 15,5, что приравнивается к номинальному числу 16. То есть все показатели будут соответствовать в большую или меньшую сторону: 7,75=8, 10=10; 12=12,5; 24=25; 31=31,5, 20=20, 40=40, 48=50, 64=63, 84=80.

Во-вторых, существуют термины как тихоходный вал и быстроходный. Первый это вал выходной, то есть который крутит приводной в действие механизм с помощью редуктора, а второй это вал за который крутят электродвигателем (принцип червячного мотор редуктора) или иным приспособлением.

Способы определения передаточного числа редуктора

Существует несколько возможностей определить передаточное отношение червячного редуктора без специальных инструментов и навыков. Данную процедуру проделает любой.

Самый популярный и простой способ определения передаточного числа не только червячного редуктора (он подходит ко всем видам: цилиндрический, конический и т. д.) не требующий разборки агрегата, а определяется на месте, если есть возможность прокрутить валы – быстроходный вал прокручивается столько раз, чтобы тихоходный вал сделал один оборот. Какое количество оборотов будет у быстроходного вала в итоге, то и есть передаточное число редуктора. Согласитесь, не сложно.

Этот способ будет посложнее, но и в нем нет ничего уникального. Он подойдет тем, кто хочет подобрать червячную пару на уже существующий корпус редуктора с дальнейшей его сборкой и установкой на место работы. Или для тех, у кого старый редуктор вышел из строя и прокрутить валы не представляется возможным. Причин может быть много, решение одно:

  • Нужно посчитать количество зубьев на червячном колесе:

  • Потом количество заходов витка на валу червяка:

И теперь делим количество заходов витка на количество зубьев колеса, получаем передаточное число редуктора.

Читайте также:  Оценки на аукционах в японии что означает

*витков на валу может быть от 1 до 10 в зависимости от типа редуктора.

Можно выразить данный способ через простую формулу где:

  • nк – это количество зубьев на колесе;
  • nв – количество витков;
  • n – передаточное число.

Если вдруг Вам было что то не понятно или возникли трудности, то обратитесь к нам, мы Вас с удовольствием проконсультируем.

Зубчатые зацепления могут иметь оси валов в разных плоскостях Ведущая деталь – червяк, не имеет зубьев. Вместо них нарезается резьба с модулем, аналогичным шестерни. Червяк передает вращение на колесо червячное посредством давления поверхности резьбовой нити на эвольвенту зуба при скольжении плоскостей относительно друг друга. У червячного узла маленький КПД и невозможна понижающая передача. Большое сопротивление не позволяет колесу сдвинуть червяк. Это используется в подъемных механизмах и устройствах с точностью перемещения.

Конструкция

Червячная передача получила свое название по ведущей детали, передающей крутящий момент. Ведомая деталь имеет зуб с косой нарезкой. По ободу радиальное занижение поверхности. Это увеличивает линию контакта нити резьбы и зуба.

Оси вращение деталей располагаются под углом. Обычно это 90°, но может быть 45°. Применяется такое расположение деталей в сильно нагруженных тихоходных передачах, со скоростью движения точки на наружной поверхности менее 5 м/сек.

При взаимодействии передачи поверхность резьбы не толкает зубья в направлении вращения, а скользит по эвольвенте, как бы отодвигая ее. В результате возникает сильное трение и нагрев деталей в месте контакта.

Червячная пара должна хорошо смазываться, охлаждаться и обладать антифрикционными свойствами. Материал червяка изменять нельзя, он нарезается из хромистой стали и проходит закалку, шлифовку поверхности резьбы или шугаровку – обработку пластиной с малой глубиной реза. Инструмент скорее продавливает поверхность резьбы, чем режет ее. Создается на верхнем слое наклеп, упрочняющий рабочую поверхность, делающий ее гладкой.

Материал для венца

Венец зубчатого колеса выполняется из относительно мягкого материала с высоким сопротивлением стиранию. В основном применяются оловянные бронзы и латунь. Для низкоскоростных передач с ручным управлением можно делать венец из серого чугуна. В зависимости от скорости вращения зубчатый венец изготавливается из материала:

  • 5 – 25 м/сек – оловянистые бронзы ОФ10-1, ОНФ;
  • ≤ 5 м/сек – Бр.АЖ9-4, алюминиево-железистая бронза;
  • ≤ 2 м/сек – венец может быть из чугуна.

Бронза стоит значительно дороже стали и мягче. Полностью из нее делаются детали, размеры которых в пределах 160 мм. Большие детали вытачиваются из стали и бронзовый на них только венец. Он нагорячо сажается на вал и закрепляется штифтами по линии соединения, чтобы венец не прокручивался. После остывания производится чистовая обработка колеса и нарезается зуб.

Расчет диаметра

Диаметр колеса рассчитывается по средней линии зуба – ширины зуба и впадины равны. Наружный, используемый для изготовления и расчетов радиус, определяется теоретически. После завершения обработки, он находится за пределами фактического обода колеса.

Скольжение происходит по линии делительного диаметра – середина зуба по высоте. Он рассчитывается по формуле:

где d2 — делительный диаметр шестерни; m – модуль; z2 – количество зубьев колеса.

Наружный радиус зуба имеет один центр с осью червяка.

Ширина зубчатого венца

Ширину венца червячного колеса определяют по числу витков винта по формуле:

где b2 – ширина венца; 0,315 и 0,355 – расчетный коэффициент; Z1 – количество заходов винтовой резьбы; a – межцентровое расстояние; aw – расстояние с учетом смещения червяка относительно зубчатого колеса.

Расстояние смещения определяет размер зазора между рабочими элементами деталей.

Расчет передаточного числа червячной передачи

Ведущая деталь, передающая вращение – червяк, не имеет зубьев. На нем нарезается резьба с числом заходов: 1, 2, 4. Червяки с 3 витками ГОСТом не предусмотрены. Их можно рассматривать и рассчитывать только теоретически. При расчете передаточного числа вместо количества зубьев шестерни берется число заходов резьбы.

Рассчитать передаточное число червячной передачи, формула аналогична другим зубчатым зацеплениям:

где U – передаточное число; Z1 – число заходов на червяке; Z2 – количество зубьев на колесе.

Обратная передача крутящего момента от колеса на червячный вал невозможна. Из-за сильного трения зубьев и низкого КПД передачи колесо не может быть ведущим. Это позволяет не делать тормоза в подъемных механизмах. Достаточно регулировать вращение червячного вала.

Расчет передаточного отношения

Величина передаточного отношения червячной передачи рассчитывается по отношению скорости скольжения червяка и вала.

Где V1 – скорость скольжения червяка; V2 – скорость скольжения червячного колеса. Аналогично w1 и w2 угловые скорости; dδ1, dδ2 – диаметры.

Произведя подстановку формул значений скоростей скольжения, и математические сокращения получает формулу передаточного отношения червячной передачи:

Где i – передаточное отношение. В червячном зацеплении оно равно передаточному числу.

Характеристики червячных передач нормируются по ГОСТ 2144-76. Для червяка с 1 и 2 заходами передаточное число может иметь значение 8-80. Для 4-заходных червяков разбег значений меньше, в пределах 30-80.

Классификация

По направлению витка передачи в большинстве своем бывают правыми. Иногда встречается левое направление нити.

Червячные зацепления классифицируются по форме наружной поверхности червяка:

Вогнутая поверхность ведущей детали увеличивает количество зубьев, находящихся одновременно в зацеплении. В результате возрастает КПД и мощность передачи. Недостаток глобоидных червяков в сложности изготовления. Витки должны быть одинаковой высоты при вогнутой наружной поверхности.

По форме нити резьбы различают червяки:

  • архимедов;
  • конволютный;
  • нелинейный.

Архимедов червяк отличается прямой в сечении эвольвентой. У конволютного конфигурация выпуклая, близкая к форме обычной шестерни. Нелинейные профили имеют выпуклую и вогнутую поверхность.

Читайте также:  Язык между двумя пальцами значение

Зубчатое колесо имеет зуб наклонный обратной конфигурации, по форме совпадающий с впадиной между нитями.

Расположение червяка относительно колеса может быть:

Верхнее оптимально подходит для скоростных передач. Боковое наиболее компактное. При картерном способе смазки – масло находится в поддоне и нижняя деталь, вращаясь, смазывает остальные, удобнее нижнее расположение червяка.

Червячные колеса относятся к косозубым. Оси деталей располагаются обычно под углом 90°. В сильно нагруженных механизмах угол может быть 45°.

Зубчатые колеса по профилю зуба делят:

По типу они могут быть:

  • с непрерывным вращением – полные;
  • зубчатый сектор.

Сектор может быть разной величины, от половины круга, до рабочей длины короче червяка.

Достоинства и недостатки

Особенностью червячной передачи является наличие тормозящего момента и большой интервал передаточных чисел и крутящего момента. К положительным характеристикам относятся:

  • передаточное число в пределах 8–100;
  • работает тихо;
  • начало вращения и остановка происходят плавно;
  • высокая точность перемещений;
  • возможность смещения на малую величину;
  • компактность узла;
  • самотормозящая передача.

Передача движения в паре червяк и червячное колесо возможна только в одном направлении. При попытке ведомой детали провернуться, возникает тормозящий момент. Это используют в приводе поворота и подъемных механизмах.

Основной недостаток в потерях мощности, связанных с большим трением. Это приводит к быстрому износу деталей, особенно колеса. К недостаткам относятся:

  • низкий КПД;
  • трение;
  • сильный нагрев;
  • изготовление венца из дорогих материалов;
  • частое заедание;
  • быстрое изнашивание;
  • постоянная регулировка зацепления подтягиванием червяка;
  • сложное изготовление.

Червячное зацепление требует высокой точности изготовления винтового зацепления и чистоты обработки. Передача не переносит попадание в рабочую зону пыли и другого мусора. Требует интенсивной смазки и охлаждения.

Применение механизма

Червячный механизм способен при малых габаритах заменить многоступенчатый редуктор. Его передаточное число определяется значением 100, в отдельных узлах может быть значительно больше.

Применение червячной передачи целесообразно в механизмах, требующих высокой точности при небольшой скорости:

  • червячные редуктора;
  • в подъемниках;
  • лифтах;
  • лебедках;
  • рулевых механизмах;
  • точная доводка положения инструмента в станках;
  • корректировка в ЧПУ;
  • приборах.

В основном используется самоторможение и точность перемещения.

Нарезание червячных колес

При проектировании создается модель червячного колеса. По ней легко определится со способом нарезки:

Торцевой требует инструмента, в точности повторяющего червяк. Дает хорошую точность и чистоту обработки. Фрезу выставлять сложно, необходимо, чтобы в конце обработки она имела положение относительно колеса, в точности соответствующее червяку.

Нарезка зубьев на венце

По наружному диаметру червячное колесо имеет полукруглое углубление. Это позволяет лучше прилегать деталям по эвольвенте и смещать ось, увеличивая площадь контакта. Центр радиуса углубления должен совпадать с осью червяка.

Фрезы для нарезания червячного колеса должны быть с таким же наружным диаметром, как червяк. Внешне она повторяет форму ведущей детали, только вместо непрерывной линии резьбы ряды резцов. Режущая пластина по форме точно повторяет нитку резьбы, но шире нее на размер зазора. В результате конфигурация ответной детали – червячного колеса, точно повторяет формы резьбы, впадины совпадают с выступами нитей.

Фреза выставляется в плоскости оси червяка, касаясь его поверхности. Зубчатый венец вращается вокруг вертикальной оправки или собственного вала, обеспечивая тангенциальную подачу наружной поверхности относительно оси режущего инструмента. Нарезка червячных колес происходит при синхронном движении инструмента и детали, вращающихся вокруг своих осей. Отношение скорости вращения определяется передаточным числом. С каждым оборотом венец придвигается ближе к вращающейся фрезе.

Подача режущего инструмента возможна снизу и сверху. Но в большинстве случаев используют радиальную нарезку, как наиболее удобную и точную.

Ремонтная нарезка

Иногда надо сделать одну деталь, чтобы заменить ее в редукторе. В мастерской не всегда имеется полный набор фрез со всеми нормализованными диаметрами.

Если червячное колесо нарезать фрезой большим диаметром, чем радиус червяка, то прилегание будет хуже, пятно контакта меньше. Линия скольжения сместится к вершине зуба. При нарезке меньшим диаметром с таким же модулем, нагрузка будет на вершину нити резьбы. Погрешность можно компенсировать смещением инструмента и регулировкой расстояния между осями. Но трение и износ все равно будут больше, КПД упадет.

Нарезать червячное колесо фрезой с диаметром больше червяка можно для беззазорного сцепления. В этом случае используется специальная фреза с разными углами профиля для правой и левой стороны. Ось фрезы выворачивается в сторону увеличения наклона зуба. Обычные зубофрезерные станки надо переделывать для обработки беззазорного сцепления.

Из-за отсутствия зазора между рабочими элементами, поверхность быстро стирается и приходится постоянно производить регулировку. Беззазорные сцепления применяются при высокой точности и большой нагрузке с малой активностью пары, например, в прокатных станах для регулировки прижима валков – толщины прокатываемого металла.

Для изготовления одного или нескольких колес с нестандартными размерами может применяться оправка с одним резцом по форме впадины между зубьями. Инструмент вращается постоянно. Колесо вращается синхронно с инструментом. После каждого оборота реза проворачивается на размер модуля зуба и за полный оборот, подвигается к оправке с резцом на глубину реза.

Недостаток способа изготовления венца в длительности процесса. Один резец обрабатывает деталь в несколько раз дольше, чем фреза. Учитывая стирание резца, надо делать черновую и чистовую обработку.

Червячное колесо отличается от других своим внешним видом и способом обработки. Оно делается точно под определенный червяк.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Оцените статью
Добавить комментарий

Adblock
detector