Реферат на тему система зажигания

Введение

Система зажигания — это совокупность всех приборов и устройств, обеспечивающих появление искры в момент, соответствующий порядку и режиму работы двигателя. Эта система является частью общей системы электрооборудования. Первые двигатели (например, двигатель Даймлера) в качестве системы зажигания имели калильную головку (синоним — калильную трубку). То есть, воспламенение рабочей смеси осуществлялось в конце такта сжатия от сильно нагретой камеры, сообщающейся с камерой сгорания. Перед запуском калильную головку надо было разогреть, далее её температура поддерживалась сгоранием топлива. В настоящее время таким воспламенением обладают часть микродвигателей внутреннего сгорания, используемые в различных моделях (авиа-, авто-, судомодели и тому подобное). Калильное зажигание в данном случае выигрывает своей простотой и непревзойдённой компактностью.

1. История

Но по-настоящему на бензиновых моторах прижилась искровая система зажигания, то есть система, отличительным признаком которой является воспламенение смеси электрическим разрядом, пробивающей воздушный промежуток свечи зажигания.

Было создано большое количество систем зажигания. Все основные типы таких систем можно встретить и в настоящее время.

1.1. Система зажигания на основе магнето

Одной из первых появилась система зажигания на основе магнето. Идея такой системы — генерация импульса зажигания при прохождении рядом с неподвижной катушкой магнитного поля постоянного магнита, связанного с вращающейся деталью двигателя. Достоинством такой конструкции является простота, отсутствие каких-либо батарей. Такая система всегда готова к работе. Применяют её в данное время более всего на силовой продукции — например, на бензопилах, газонокосилках, маленьких бензогенераторах и тому подобной технике. Недостатками является дороговизна изготовления (катушка с большим количеством витков весьма тонкого провода, высокие требования к изоляции, качественные мощные магниты), конструктивные сложности с регулированием момента зажигания (необходимо перемещать довольно массивную катушку). Для повышения надёжности нередко применяют конструкции с выносными трансформаторами. В этом случае первично генерируется низковольтный импульс, когда магнит проходит рядом с катушкой. Данная катушка изготавливается из небольшого количества витков более толстого провода, поэтому она проще, дешевле и компактнее. Далее низковольтный импульс поступает на катушку зажигания, с которой и снимается высоковольтный импульс, идущий уже на свечи зажигания. В такие и подобные им системы зажигания в настоящее время вводят различные электронные компоненты с целью улучшения характеристик и смягчения недостатков, но неизменной остаётся идея генерации импульса с помощью постоянного магнита.

1.2. Система зажигания с внешним питанием

Вторым, наиболее распространённым типом систем зажигания на автомобильных моторах, являются системы с «батарейным», то есть с внешним питанием. В этом случае питание системы осуществляется от внешнего источника электроэнергии. Неотъемлемой частью системы зажигания является катушка зажигания, представляющая собой импульсный трансформатор. Основная функция катушки зажигания — генерация высоковольтного импульса на свече. Долгие десятилетия катушка на двигателе была одна, а для обслуживания нескольких цилиндров применялся высоковольтный распределитель. В последнее время типичным становится катушка на пару цилиндров или на каждый цилиндр (что позволяет разместить катушку непосредственно на свече как колпачок и отказаться от высоковольтных проводов). Также существуют системы зажигания автомобильных двигателей с двумя свечами, и, соответственно, двумя катушками на каждый цилиндр. Две свечи на цилиндр применяются, исходя из соображений сокращения длины пробега фронта горения в цилиндре, что позволяет немного сдвинуть момент зажигания в раннюю сторону, и получить немного большую отдачу от двигателя. Также повышается надёжность системы. В свою очередь, системы зажигания можно разделить на системы с накоплением энергии в индуктивности, и системы зажигания с накоплением энергии в ёмкости.

1.2.1. Системы с накоплением энергии в индуктивности

Системы с накоплением энергии в индуктивности занимают доминирующее положение в технике. Основная идея — при пропускании тока от внешнего источника через первичную обмотку катушки зажигания катушка запасает энергию в своём магнитном поле, при прекращении этого тока ЭДС самоиндукции генерирует в обмотках катушки мощный импульс, который снимается со вторичной (высоковольтной) обмотки, и подаётся на свечу. Напряжение импульса достигает 20-40 тысяч вольт без нагрузки. Реально, на работающем двигателе напряжение высоковольтной части определяется условиями пробоя искрового промежутка свечи зажигания в конкретном рабочем режиме, и колеблется от 3 до 30 тысяч вольт в типичных случаях. Прерывание тока в обмотке долгие годы осуществлялось обычными механическими контактами, сейчас стандартом стало управление электронными устройствами, где ключевым элементом является мощный полупроводниковый прибор: биполярный или полевой транзистор.

1.2.2. Системы с накоплением энергии в ёмкости

Системы с накоплением энергии в ёмкости (они же «конденсаторные» или «тиристорные», CDI) появились в середине 70-х годов в связи с появлением доступной элементной базы и возросшим интересом к роторно-поршневым двигателям. Конструктивно они практически аналогичны описанным выше системам с накоплением энергии в индуктивности, но отличаются тем, что вместо пропускания постоянного тока через первичную обмотку катушки к ней подключается конденсатор, заряженный до высокого напряжения (типично от 100 до 400 вольт). То есть обязательными элементами таких систем являются преобразователь напряжения того или иного типа, чья задача — зарядить накопительный конденсатор, и высоковольтный ключ, подключающий данный конденсатор к катушке. В качестве ключа, как правило, используются тиристоры. Недостатком данных систем является конструктивная сложность, и недостаточная длительность импульса в большинстве конструкций, достоинством — крутой фронт высоковольтного импульса, делающий систему менее чувствительной к забрызгиванию свечей зажигания, характерному для роторно-поршневых двигателей.

1.2.3. Другое

Существуют также конструкции, объединяющие оба принципа, и имеющие их достоинства, но, как правило, это любительские или экспериментальные конструкции, отличающиеся высокой сложностью изготовления.

1.3. Момент зажигания

Важнейшим параметром, определяющим работу системы зажигания, является так называемый момент зажигания, — то есть время, в которое система поджигает искровым разрядом сжатую рабочую смесь. Определяется момент зажигания как положение коленвала двигателя в момент подачи импульса на свечу опережением относительно верхней мёртвой точки в градусах (типично от 1 градуса до 30).

Это связано с тем, что для сгорания рабочей смеси в цилиндре требуется некоторое время (скорость распространения фронта пламени около 20-30 м/с). Если поджигать смесь в положении поршня в верхней мёртвой точке (ВМТ), смесь будет сгорать уже на такте расширения и частично на выпуске и не обеспечит эффективного давления на поршень (попросту говоря, догоняя поршень, вылетит в выхлопную трубу). Поэтому (оптимальный) момент зажигания подбирают таким образом (опережают относительно ВМТ), чтобы максимальное давление сгоревших газов приходилось на ВМТ.

Оптимальный момент (опережения) зажигания зависит от скорости движения поршня (оборотов двигателя), степени обогащения/обеднения смеси и немного от фракционного состава топлива (влияет на скорость горения смеси). Для автоматического приведения момента зажигания к оптимальному применяются центробежный и вакуумный регуляторы, или электронный блок управления.

Следует отметить, что на нагрузочных режимах в бензиновых двигателях при оптимальных (по скорости горения смеси) углах зажигания часто возникает детонация (взрывное горение смеси), поэтому, для её избежания, реальный угол опережения зажигания делают чуть меньше, до порога возникновения детонации (подводом начального угла опережения вручную, или электроникой блока управления — автоматически, в движении).

Как "позднее зажигание", так и "раннее зажигание" (относительно оптимального) приводит к падению мощности двигателя и снижению экономичности из-за снижения КПД, а также избыточному нагреву и нагрузкам на детали двигателя. "Раннее зажигание", кроме того, приводит к сильной детонации, особенно при резком нажатии на педаль газа. Регулировка опережения зажигания на автомобилях обычно заключается в выставлении наиболее раннего момента зажигания, еще не приводящего к детонации при разгоне.

2. Узлы системы зажигания

  • Датчик момента искрообразования

В старых двигателях использовался механический кулачок и контактная группа (прерыватель), разрывающая цепь при определенном положении вала. Это упрощало низковольтную электрическую часть системы до двух проводов — от источника питания до катушки, и от катушки до прерывателя. Недостатком этой системы была крайне низкая надёжность контактов прерывателя (возможно, самое ненадёжное место в двигателе как целом), их уязвимость для нагара и влаги.

Потому с развитием электроники от прерывателя отказались, заменив его бесконтактными датчиками — индуктивными, оптическими, либо наиболее распространенными датчиками Холла, основанными на эффекте изменения проводимости полупроводника в магнитном поле. Неоспоримое преимущество данных схем — отсутствие необходимости в периодическом обслуживании, — за исключением замены свечей зажигания. В таком случае, для выдачи резкого фронта/спада напряжения на катушку необходима электронная схема, делающая это на основании сигнала с датчика. Отсюда происходит название такого варианта: «электронное зажигание». Электронная схема обычно исполнена в виде единого; зачастую — неремонтопригодного узла, известного в просторечии как «коммутатор».

В советских/российских двигателях малого литража (лодочные, мотоциклетные) электронное зажигание применялось с 70х годов; в автомобилях — начиная с ВАЗ-2108 (1984).

В современных автомобилях на его смену пришли датчик положения коленвала и датчик фаз. Точный момент искрообразования вычисляется вычисляется электронным блоком управления в зависимости от показаний многих иных датчиков (датчик детонации, датчик положения дроссельной заслонки и т.п.) и в зависимости от режима движения и работы двигателя.

Устройство, изменяющее положение шторки бесконтактного датчика или кулачка контактного (а значит, и момент зажигания) в зависимости от оборотов двигателя. Состоит из грузиков (обычно — двух), которые, с увеличение оборотов двигателя, расходятся, преодолевая сопротивление пружинок, поворачивая при этом часть вала со шторкой или кулачком вперёд (увеличивая опережение зажигания при увеличении оборотов).

Устройство, изменяющее положение датчика относительно начального (а, значит, и момент зажигания) в зависимости от разрежения во впускном коллекторе, то есть от степени открытия дроссельных заслонок и оборотов двигателя. Обычно включает в себя шланг от узла прерывателя/датчика до карбюратора или впускного коллектора. На прерывателе разрежение воздействует на мембрану, которая, преодолевая сопротивление пружины, сдвигает датчик (контакты прерывателя) навстречу движению кулачка (шторок), то есть, увеличивая опережение зажигания при большом разрежении во впускном коллекторе (в этом случае смесь горит дольше, это режимы малых нагрузок при высоких оборотах двигателя).

Читайте также:  Старлайн а93 сброс на заводские установки

Центробежный и вакуумный регуляторы позволяют добиться оптимального момента зажигания во всех режимах работы двигателя. В современных двигателях они уже не используются, — поскольку задача определения оптимального момента искрообразования переложена на микропроцессор (в электронном блоке управления, или контроллере), учитывающий в вычислениях также положение дросселей, обороты двигателя, сигналы датчика детонации и т. п.

  • Катушка зажигания (часто называется «бобина»)

Трансформатор, преобразующий резкий фронт/спад напряжения от прерывателя/коммутатора в высоковольтный импульс. В малогабаритных двигателях (лодочные, мотоциклетные) традиционно использовалось по одной катушке на каждый цилиндр, соединённой со свечой высоковольтным проводом. В автомобильных же двигателях традиционно использовалась одна катушка и распределитель; однако в большинстве современных двигателей используется несколько катушек зажигания, либо объединённых в едином корпусе с электронными коммутаторами (т.н. «модуль зажигания»), при этом каждая катушка обеспечивает искру в конкретных цилиндрах, либо в группах цилиндров, что позволяет отказаться от распределителя зажигания, либо отдельные катушки устанавливающиеся непосредственно на каждую свечу; при этом, катушки выполнены в виде надеваемых на свечи колпачков, конструктивно объединяющих собственно высоковольтный трансформатор и силовой ключ управления, что позволяет отказаться также и от высоковольтных проводов. Нередко —в случае большеобъемных двигателей или двигателей, работающих на обеднённых смесях,— используют двух- или многоточечный по́джиг для уменьшения фазы горения смеси или для повышения надёжности (авиадвигатели). В этом случае устанавливается либо два комплекта катушек зажигания и распределителей, либо используется схема с индивидуальными катушками (например, двигатели Honda серии LxxA). Также, в двигателях с четным числом цилиндров часто применяется схема с катушкой зажиганиия, содержащей выводы от обоих концов высоковольтной обмотки и соответственно питающей две свечи зажигания, находящихся в цилиндрах, циклы в которых сдвинуты друг относительно друга так, чтобы ненужная в данный момент искра попадала на такт выпуска или продувки. Преимущество: позволяет упростить схему зажигания; причём, в случае двухцилиндровых двигателей — кардинально.

Высоковольтный переключатель, вращающийся вместе с распределительным валом двигателя, подключает одну катушку зажигания к нужной в данный момент свече. Обычно исполняется в одном корпусе и на одном валу с прерывателем/датчиком положения вала. Состоит из подвижного контакта (бегунка) и вымя-образной крышки, в которой смонтированы неподвижные контакты.

Вполне надёжен, но требует периодической чистки; также, трещины крышки часто приводят к неработоспособности двигателя, — особенно во влажную погоду. Бегунок имеет тенденцию к подгоранию.

В современных двигателях распределитель не используется, уступив место модулям зажигания, использующим отдельные катушки для отдельных групп свечей, или катушкам установленным непосредственно на свечи.

От катушки к свече, или же от катушки к центру распределителя, и от свечи к окружности распределителя. Многожильный провод в слое толстой изоляции, способной выдержать разность потенциалов до 40 киловольт. Характеризуются распределённым активным сопротивлением (порядка нескольких килоом на метр), либо так называемым "нулевым сопротивлением" (порядка нескольких ом на метр). В последнее время стала применяться изоляция из силикона, как более надёжная и долговечная.

В некоторых современных автомобилях катушки зажигания устанавливаются непосредственно на свечи, и высоковольтные провода не используются.

Ввинчиваемая в цилиндр деталь, содержащая в себе искровой промежуток внутри цилиндра и контакт для подключения провода (катушки) вне него.

Непосредственно поджигает смесь в цилиндре.

Генератор с вращающимся постоянным магнитом, статорная катушка которого совмещена с катушкой зажигания, а сам генератор — с узлом прерывателя. Позволяет исполнение всей системы зажигания в виде блока «магнето+высоковольтный провод+свеча» без любых других проводов и узлов, в том числе — без аккумуляторной батареи. Используется в бензопилах, газонокосилках и мопедах, где не применяется замок зажигания с секретным ключом. В некоторых случаях (лодочный мотор «Вихрь») используется магнето с 2 (двумя) выносны́ми катушками зажигания.

3. Неисправности системы зажигания

Грубо все неисправности систем зажигания можно разделить на три категории:

  • Неправильная регулировка и/или неисправность центробежного и/или вакуумного регулятора опережения зажигания (при их наличии), в современных системах — не оптимальная программа электронного блока управления. (На практике употребляются термины "раннее зажигание" и "позднее зажигание".)
  • Периодический пропуск искры в одном или нескольких цилиндрах (в просторечии — перебои). Может быть следствием слабой мощности импульса или повреждением изоляции высоковольтных частей системы (искра сбегает).
  • Полное отсутствие искры в одном или нескольких цилиндрах (соответственно двигатель троит или не заводится).

Большинство узлов системы зажигания неремонтопригодны и в случае отказа заменяются на исправные. Наиболее часто выходящие из строя узлы:

  • (Контакты механического прерывателя, если он есть — срок службы большой, но требует достаточно частой периодической зачистки контактов и регулировки зазора).
  • Свечи зажигания. На практике, их меняют превентивно, с некоторой периодичностью, заведомо меньшей, чем средний срок службы свечи до отказа.
  • Высоковольтные провода — по причине старения изоляции, высокого передаваемого напряжения и постоянного механического воздействия (соединение неподвижной катушки зажигания и вибрирущего двигателя).
  • Катушка (или модуль) зажигания — старение изоляции в обмотках. Замечен больший ресурс маслонаполненных катушек.
  • Электронный коммутатор — по причине старения электронных компонентов.
  • Прочие компоненты — как правило, рассчитаны на полный срок службы автомобиля и отказывают или в результате нарушения условий эксплуатации (температура, напряжение, загрязнение и т.п.), или по причине низкого качества изготовления. Сюда же относятся и проводка.

скачать
Данный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 13.07.11 04:10:24
Похожие рефераты: Опережение зажигания, Катушка зажигания, Свечи зажигания, Свеча зажигания, Угол опережения зажигания, Национальная установка зажигания, Прерыватель-распределитель зажигания, Центробежный регулятор опережения зажигания, Система РОСС (Российская Отечественная Система Самозащиты).

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГЛАВНОГО УПРАВЛЕНИЯ ОБЩЕГО И

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ

ПИСЬМЕННАЯ ЭКЗАМЕНАЦИОННАЯ РАБОТА

ТЕМА: Устройство, принцип действия системы зажигания

ВЫПОЛНИЛ: Сидоркин М. Н.

ПРОВЕРИЛ: Попов Н. И.

п. ЧУНСКИЙ ПУ – 31

РОЛЬ АВТОМОБИЛЬНОГО ТРАНСПОРТА

Автомобиль служит для быстрого перемещения грузов и пассажиров по различным типам дорог и местности. Автомобильный транспорт играет важнейшую роль во всех сторонах жизни страны. Без автомобиля невозможно представить работу не одного промышленного предприятия, государственного учреждения строительной организации, воинской части. Значительное количество грузовых и пассажирских перевозок на долю этого транспорта. Легковой автомобиль широко вошёл в быт трудящихся нашей страны, стал средством передвижения, отдыха, туризма.

Великое значение автомобиля в Вооружённых Силах. Боевая и повседневная деятельность войск непрерывно связана с использованием автомобильной техники. От её наличия и состояния зависит подвижность маневренность частей, выполнение боевой задачи. Таким образом автомобиль стал неотъемлемым элементом в сложной деятельности Вооруженных Сил и народного хозяйства. Хорошо знать и грамотно эксплуатировать автомобильную технику-долг и почётная обязанность водителей.

СИСТЕМА ЗАЖИГАНИЯ

Система зажигания служит для воспламенения рабочей смеси в цилиндрах двигателя в строго определённые моменты. Воспламенение смеси может быть осуществлено батарейной системой зажигания или от магнето.

По способу прерывания тока первичной цепи батарейные системы зажигания подразделяются на контактные, контактно-транзисторные и бесконтактные транзисторные.

По исполнению системы зажигания бывают экранированный (ЗИЛ — 131) и неэкранированные (ЗИЛ — 130). Экранируют систему зажигания с целью подавления радиопомех, которые возникают во время работы системы зажигания.

ПРИНЦИП ДЕЙСТВИЯ КОНТАКТНОЙ

Контактная система зажигания включает в себя: аккумуляторную батарею 1, включатель зажигания 2, добавочный резистор 3, катушку зажигания 4, прерыватель тока (кулачок 7 и контакты 9), конденсатор 8, распределитель тока высокого напряжения 5, свечи 6, соединительные провода низкого и высокого напряжения.

Прерыватель тока и распределитель тока высокого напряжения входят в один прибор, который называется распределитель зажигания.

В системе зажигания имеется цепь низкого напряжения первичная цепь и цепь высокого напряжения (вторичная цепь). В цепи низкого напряжения входят источники тока низкого напряжения (А. Б. и генератор), выключатель зажигания, добавочный резистор, первичная обмотка (W1 ) катушки зажигания, прерыватель тока конденсатор и соединительные провода низкого напряжения. В цепь высокого напряжения входят вторичная обмотка (W2 ), катушки зажигания распределитель тока высокого напряжения, свечи и провода высокого напряжения.

Название: Устройство, принцип действия системы зажигания
Раздел: Рефераты по транспорту
Тип: реферат Добавлен 22:44:39 30 августа 2005 Похожие работы
Просмотров: 19528 Комментариев: 38 Оценило: 48 человек Средний балл: 3.1 Оценка: 3 Скачать

При включенном зажигание и замкнутых контактов прерывателя по первичной цепи проходит ток низкого напряжения: вывод “+” аккумуляторная батарея – выключатель зажигания – добавочный резистор – первичная обмотка катушки – замкнутые контакты прерывателя – масса – вывод “-” аккумуляторной батареи.

Ток, проходит по первичной обмотки катушки зажигания, создаются вокруг её витков магнитное поле, в котором оказываются витки и вторичной обмотки. При размыкание контактов прерывателя ток в первичной цепи прекращается, в следствии чего магнитное поле катушки исчезает. Исчезая, магнитные силовые линии пересекают ветки вторичной обмотки и индуктирует в каждом из них небольшую ЭДС. Напряжение на концах вторичной обмотки 15-20 КВ и более. Через центральный провод, распределитель тока и провод свечи ЭДС высокого напряжения подводиться к электродам свечи между которыми и проходит искровой разряд воспламеняющий рабочею смесь в цилиндре двигателя. В дальнейшем при размыкании и замыкании контактов прерывателя процесс повторяется с порядком и режимом работы двигателя.

При размыкании контактов прерывателя исчезающее магнитное поле пересекает и ветки первичной цепи катушки зажигания индуктируя в ней ЭДС самоиндукции порядка 250-300 В, что вызывает сильное искрение контактов и приводит к значительному уменьшению вторичного напряжения.

Для уменьшения искрения контактов прерывателя и повышения вторичного напряжения параллельно контактам прерывателя ставят конденсатор определённой ёмкости. В начальный момент размыкания контактов конденсатор заряжается тем самым предохраняя их от искрения.

УСТРОЙСТВО ПРИБОРОВ СИСТЕМЫ ЗАЖИГАНИЯ

Катушка зажигания предназначена для преобразования тока низкого напряжения в ток высокого напряжения по исполнению катушки зажигания бывают экранированные и не экранированные.

Катушка зажигания Б 114 включает в себя сердечник 15, вторичную обмотку 8(W2 =41 тыс. витков), первичную обмотку 14 (W1 =180 витков), магнитопровод 11, кожух 7, крышку 2 с тремя вы

водными клеммами, фарфоровый изолятор 13. Свободное пространство внутри катушки зажигания заполнено трансформаторным маслом, что улучшает изоляцию обмоток и отвод тепла от них на корпус. Первичная и вторичная обмотка выполнены из медного провода диаметром соответственно 1,25 мм и 0.06 мм. Один конец вторичной обмотки соединён с корпусом, а второй – с клеммой 3 высокого напряжения.

Читайте также:  Иж 79 9т макарыч

Распределитель зажигания Р13Д содержит следующие основные детали и узлы: корпус, приводной вал. Прерыватель тока низкого напряжения, распределитель тока высокого напряжения. 13 распределитель зажигания монтируется центробежный и вакуумный регуляторы опережения зажигания и октан корректор.

В чугунном корпусе в подшипнике из бронзы вращается вал привода кулачка прерывателя, ротора распределителя и центробежного регулятора опережения зажигания. На корпусе имеется маслёнка, изолированная клемма и защёлки. Хвостик вала смещён относи

тельно оси вала с целью установки распределителя только в определённом положении.

К прерывателю тока низкого напряжения относится: кулачок, неподвижная пластинка и подвижная, стойка неподвижного контакта, рычаг с подушкой, контакты эксцентрик регулировки зазора в контактах.

Вращающийся кулачок прерывателя своими выступами набегает на подушку рычага и, отжимает его от неподвижного контакта размыкает первичную цепь. Когда выступ кулачка сходит с подушки рычага, контакты снов замыкаются под действием пластинчатой пружины. Число граней кулачка равно числу цилиндров двигателя. За два оборота коленвала двигателя кулачок совершает один оборот. Шариковый подшипник обеспечивает лёгкость перемещения подвижной пластины под действием вакуумного регулятора.

Регулировочным эксцентриком обеспечивает зазор между контактами прерывателя в пределах 0,3-0,4 мм. Зазор более 0,4 мм вызывает перебой в работе двигателя при больших оборотах коленвала, а зазор менее 0,3 вызывает перебой в работе двигателя, при малых оборотах коленвала затруднён пуск двигателя.

К распределителю тока высокого напряжения относится: ротор с токорозносной пластиной, крышка распределителя с клеммами для проводов и с угольным электродом для снижения радиопомех. Крышка фиксируется в определенном положение с помощью выступа на ней и паза на корпусе распределителя.

Для получения наибольшей мощности и экономичности двигателя необходимо подавать искру в цилиндр в такой момент, чтобы максимальное давление от сгорания смеси достигалось при нахождении поршня в положения 10-20 0 после Вмт.

Величина оптимального угла опережения зажигания зависит от частоты вращения коленчатого вала двигателя, нагрузки на двигатель, октанового числа топлива и конструктивных особенностей двигателя. Для учёта этих факторов в распределителе зажигания имеются центробежный и вакуумный регуляторы опережения зажигания, а также октан корректор. Центробежный регулятор служит для автоматического изменения угла опережения зажигания в зависимости от частоты вращения коленчатого вала двигателя. Чем больше частота вращения коленвала, тем больше должно быть опережения зажигания и наоборот. Центробежный регулятор помещён внутри корпуса распределителя и включает пластину с грузиками, две пружины и пластину кулачка.

С увеличением частоты вращения коленчатого вала центробежная сила грузиков возрастает, грузики расходятся и своими штифтами поворачивают пластину с кулачками по направлению вращения валика увеличивая угол опережения зажигания. С уменьшением частоты вращения центробежная сила грузиков уменьшается, пружины сближают грузики, кулачок поворачивается против хода, уменьшая угол опережения зажигания.

Вакуумный регулятор служит для автоматического изменения угла опережения зажигания в зависимости от нагрузки на двигатель. С увеличением нагрузки состав смеси улучшается а следовательно, время её горения сокращается. Таким образом, с увеличением нагрузки угол опережения зажигания необходимо уменьшить, а с уменьшением нагрузки — увеличивать.

Вакуумный регулятор опережения зажигания крепится к корпусу распределителя зажигания. Полость регулятора сообщается через трубку с задроссельным пространством карбюратора с уменьшением нагрузки на двигатель разрежение под дроссельной заслонкой увеличивается и по трубки передаётся в полость со стороны пружины. Под действием атмосферного давления с обратной стороны диафрагмы прогибается, сжимая пружину, и при помощи тяги перемещает подвижную пластину на встречу вращения кулачка, увеличивая угол опережения зажигания. При увеличение нагрузки дроссельная заслонка открывается, разряжение под ней уменьшается, пружина, разжимаясь, прогибает диафрагму в противоположную сторону. В этом случае тяга перемещает пластину по ходу вращения кулачка, уменьшая угол опережения зажигания.

Октан корректор служит для ручной корректировки угла опережения зажигания в зависимости от октанового числа топлива.

Он включает в себя неподвижную и подвижную пластины, винт с регулировочными гайками. Корректирование угла опережения зажигания производится поворотом корпуса распределителя в ту или другую сторону. С переходом на топливо с большим октановым числом угол опережения зажигания необходимо несколько увеличить и наоборот.

Свеча зажигания преобразует импульсы высокого напряжения в искровой разряд в камере сгорания. Для нормальной работы свечи температура нижней части изолятора должна быть 500-600 0 С при температуре 500 0 С возможно отложение нагара на изоляторе свечи, что может вызвать перебои в работе, а при температуре изолятора более 600 0 С возможно калильное зажигание (воспламенение смеси от температуры изолятора свечи). Тепловая характеристика свечи выражается калильным числом, величены которого выбирается заводом – чем выше калильное число, тем свеча более «холодная», и наоборот.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ СВЕЧЕЙ ЗАЖИГАНИЯ

Буквы А и М обозначают размер резьбы на корпусе свечи в мм (А – М14*1,25) (М – М 18*1,5) число за буквой – калильное число свечи (8, 10, 11, 14 и т. д.) буквы Н и Д длинны резьбовой части корпуса (Н = 11 мм, Д = 19 мм); буква В входит в маркировку в том случае, если тепловой конус изолятора выступает за торец корпуса свечи; буква Т указывает на то, что герметизация между центральным электродом и изолятора достигается с помощью термоцемента длина резьбовой части корпуса 12 мм. Зазор между электродами свечи находятся в пределах от 0,5 до 1,0 мм.

1 – наконечник для крепления провода высокого напряжения 2- керамический изолятор 3 – стержень 4 – корпус 5 – герметик 6 – медные шайбы 7 – медно-асбестовое кольцо 8 – центральный электрод 9 – боковой электрод

1. Свечи зажигания: отложения нагара на внутренней поверхности и большое загрязнение снаружи, нарушение нормального зазора между электродами, трещины на изоляторе и поломка бокового электрода. Из-за этих неисправностей искра свечи получается слабая или не проскакивает совсем. Это приводит к неустойчивости и неравномерной работе двигателя, уменьшению его мощности и остановки двигателя при повышенной нагрузки.

2. Катушка зажигания: замыкание первичной обмотки на массу и замыкание вторичной обмотки на первичную замыкание дополнительного резистора на массу, перегорание дополнительного резистора и трещин в крышках и изолятора.

3. Прерыватель распределителя: обгорание или замасливание контактов прерывателя и нарушение нормального зазора между ними, заедание грузиков и ослабление пружин центробежного регулятора, нарушение герметичности вакуумного регулятора, появление трещин в крышке и роторе распределителя и обрыв гибких проводов, соединяющих неподвижный диск с подвижным и рычагом подвижного контакта с зажимом низкого напряжения.

Обгорание или замасливание контактов прерывателя вызывает резкое увеличение сопротивление между ними, (в см) из-за чего уменьшается ток в первичной обмотки катушки и снижения мощности искры в свече. Нарушение зазора между контактами прерывателя приводит к ухудшению искрообразования между электродами свечей, и к перебоям в работе двигателя.

4. Контакторы: пробой изоляции, обрыв соединительного провода и плохой контакт между конденсатором и зажимом прерывателя или массой. Неисправность конденсатора вызывает сильное искрение между контактами прерывателя.

Техническое обслуживание приборов зажигания при ТО-1 необходимо очистить поверхность приборов зажигания от пыли и грязи, проверить крепление проводов, затяжку всех разъёмов, а также протереть крышку распределителя неэкранированной системы зажигания снаружи и изнутри чистой тряпкой, смоченной в бензине.

При ТО-2 надо смазать все точки распределителя зажигания. Смазку производят маслом двигателя. Для смазки вала привода необходимо ввернуть крышку маслёнки на 1-2 оборота; проверить состояния свечей зажигания, при необходимости отчистить их от нагара, проверить с помощью специального щупа зазор между электродами свечи.

Через одно ТО-2 следует проверить и отрегулировать зазор между контактами прерывателя при СО необходимости снять распределитель зажигания, разобрать и осмотреть все его элементы, очистить от пыли и грязи, собрать и проверить его работу на стенде. Заполнить смазкой колпачковую масленку.

МЕРЫ БЕЗОПАСНОСТИ НА АВТОТРАНСПРТНЫХ

Во всех производственных помещениях необходимо выполнить следующие противопожарные требования: курить только в специально отведённые места, не пользоваться открытым огнём; хранить топливо и керосин в конистрах, не превышающих сменную потребность; не хранить порожную тару из-под топлива и смазочных материалов; проводить туалетную уборку в конце каждой смены; разлитое масло и топливо убирать с помощью песка; собирать использованные обтирочный материалы складывать их в металлический ящик с крышками и по окончанию смены выносить в специально отведённые для этого места.

Для оповещения о пожаре служат телефон и пожарная сигнализация.

Эффективным и наиболее распространённым средством тушения пожара является вода, однако в некоторых случаях использовать её нельзя. При невозможности тушения водой горячею поверхность засыпают песком, накрывают асбестовым одеялом, используют пенные либо углекислотные огнетушители.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. «Устройство автомобилей» Ю. И. Боровских, Ю. В. Буралёв, К. А. Морозов.

2. «Устройство и эксплуатация автомобилей» В. П. Полосков, П. М. Лещёв, В. Н. Хартанович.

3. «Устройство и техническое обслуживание грузовых автомобилей» В. Н. Карагодин, С. К. Шестопалов

4. «Двигатели внутреннего сгорание. Автомобили, тракторы и их эксплуатация» Г. П. Панкратов.

Главный реферат.docx

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

по дисциплине: Устройство автомобилей и тракторов.

тема: Система зажигания.

Выполнила студентка: ИВАНОВА ОЛЬГА МИХАЙЛОВНА2545

Группа: менеджмент организации.

Региональный центр: АНО «ИНОТ»

1. Назначение и принцип действия.

2. Контактная система зажигания.

3. Контактная — транзисторная система зажигания.

4. Электронные системы зажигания.

5. Бесконтактные системы зажигания с нерегулируемым временем накопления энергии.

6. Система зажигания с регулированием времени накопления энергии.

7. Микропроцессорные системы зажигания.

8. Катушка зажигания.

9. Распределители зажигания.

10. Свечи зажигания.

11. Высоковольтные провода.

12. Используемая литература.

1. Назначение и принцип действия.

Система зажигания предназначена для воспламенения рабочей смеси в цилиндрах бензиновых двигателей внутреннего сгорания (ДВС).

Развитие автомобилей первоначально было связано с системой зажигания от магнето, но оно достаточно быстро было вытеснено батарейной системой зажигания, которая в различных вариантах и применяется на современных автомобилях.

Тенденции развития ДВС связаны с повышением их экономичности, снижением токсичности отработавших газов, уменьшением массы и габаритных размеров, повышением частоты вращения коленчатого вала и степени сжатия.

Это оказывает влияние на конструкцию и схемное исполнение систем зажигания, не затрагивая, однако, основного принципа их действия — накопления энергии в магнитном или электрическом поле с последующим мгновенным выделением ее в искровом промежутке свечи в нужный момент такта сжатия в рабочем цилиндре и в соответствии с заданным порядком работы цилиндров двигателя.

Читайте также:  Как заделать дырку в

Разряд в искровом промежутке вызывается импульсом напряжения, величина которого зависит от температуры и давления в камере сгорания, конфигурации и размеров искрового промежутка. Величина импульса должна обеспечиваться системой зажигания с определенным запасом, с учетом износа электродов свечи в эксплуатации. Обычно коэффициент запаса составляет 1,5 — 1,8 , а величина импульса напряжения лежит в пределах 20 — 30 кВ.

Процесс сгорания рабочей смеси разделяется на три фазы: начальную, когда формируется пламя, возникающее от искрового разряда в свече, основную, когда пламя распространяется на большей части камеры сгорания, и конечную, когда пламя догорает у стенок камеры. Этот процесс требует определенного времени. Наиболее полное сгорание рабочей смеси достигается своевременной подачей сигнала на воспламенение, т.е. установкой оптимального угла опережения зажигания в зависимости от режима работы двигателя.

Угол опережения зажигания определяется по углу поворота коленчатого вала двигателя от момента возникновения искры до момента достижения поршнем верхней мертвой точки.

Если угол опережения зажигания больше оптимального, то зажигание раннее. Давление в камере сгорания при этом достигает максимума до достижения поршнем верхней мертвой точки и оказывает противодействующее воздействие на поршень. Раннее зажигание может явиться причиной возникновения детонации. Если угол опережения зажигания меньше оптимального, зажигание позднее, в этом случае двигатель перегревается.

На начальную фазу сгорания влияет энергия и длительность искрового разряда в свече. В современных системах энергия разряда достигает 50 МДж, а его длительность 1 — 2,5 мс.

По способу накопления энергии различаются системы с накоплением энергии в индуктивности и в емкости (рис. 8.1). В обоих случаях для получения импульса высокого напряжения используется катушка зажигания, представляющая собой высоковольтный трансформатор, содержащий две обмотки: первичную с малым числом витков и омическим сопротивлением в доли и единицы Ома и вторичную с большим числом витков и омическим сопротивлением в единицы и десятки к0м. Коэффициент трансформации катушки лежит в пределах 50 -150. Значительное количество энергии, которое требуется для воспламенения рабочей смеси, накопить в конденсаторе приемлемых размеров при достаточно низком напряжении бортовой сети невозможно. Поэтому система по рис. 8.1,б оборудована высоковольтным преобразователем напряжения. Такое усложнение схемы не дает существенных преимуществ, поэтому системы с накоплением энергии в емкости на автомобилях практически не применяются. Принцип работы схемы, изображенной на рис. 8.1, а, характерен для всех систем зажигания, устанавливаемых на автомобилях.

Выключатель зажигания S1 включает систему в сеть питания. В некоторых системах роль выключателя S1 играют контакты реле, управляемого выключателем зажигания. При вращении вала двигателя происходит замыкание контактов прерывательного механизма S2, и ток начинает нарастать в первичной цепи катушки зажигания по экспоненте, как это показано на рис. 8.2, а.

В момент, необходимый для подачи искрового импульса на зажигание, прерыватель S2 разрывает свои контакты, после чего возникает колебательный процесс, связанный с обменом энергией между магнитным полем катушки и электрическим полем в емкостях С1 и С2. Амплитуда колебаний напряжения, приложенного к электродам свечи U2, убывает по экспоненте, как показано на рис. 8.2 пунктиром. Однако интерес представляет лишь первая полуволна напряжения, т.к. если ее максимальное значение U2m превышает напряжение пробоя искрового промежутка Uп, возникает необходимая для зажигания искра. Величина U2m зависит от коэффициента трансформации катушки зажигания Кт = W2/W1 (W2 и W1 соответственно число витков вторичной и первичной обмоток катушки), величины тока первичной обмотки в момент разрыва l1p, а также индуктивности L1 и емкости C1 первичной и C2 вторичной цепей

Коэффициент Kп учитывает потерю энергии в активных сопротивлениях первичной R1 и вторичной R2 цепей, в сопротивлении нагара Rш, шунтирующего искровой промежуток, а также в сердечнике катушки при его перемагничивании. Обычно Кп лежит в пределах 0,7 — 0,8. Влияние нагара на свечах на искрообразование значительно снижается с увеличением скорости нарастания вторичного напряжения. В современных системах эта скорость лежит в пределах 200 — 700 В/мкс.

После пробоя искрового промежутка вторичное напряжение резко уменьшается (рис.8.2). При этом в искровом промежутке сначала искра имеет емкостную фазу, связанную с разрядом емкостей на промежуток, а затем индуктивную, во время которой в искре выделяется энергия, накопленная в магнитном поле катушки. Емкостная составляющая искры обычно кратковременна, очень ярка, имеет голубоватое свечение. Сила тока в искре велика даже при малом количестве протекающего в ней электричества. Индуктивная составляющая отличается значительной продолжительностью, небольшой силой тока, большим количеством электричества и неярким красноватым свечением. Осциллограмма вторичного напряжения, соответствующая рис. 8.2, является признаком нормальной работы системы зажигания. О нормальной работе свидетельствует и вид искры между электродами свечи. В исправной системе она имеет яркое ядро, окруженное пламенем красноватого цвета.

Распределение зажигания по цилиндрам может производиться как на высоковольтной, так и на низковольтной стороне (рис. 8.3). При низковольтном распределении каждая катушка зажигания обычно обслуживает один, два либо четыре цилиндра. В первом случае катушка имеет два высоковольтных вывода (двухвыводная катушка), во втором четыре (четырехвыводная). Импульсы напряжения на обоих выводах двухвыводной катушки появляются одновременно, но один из них подается в цилиндр в такте сжатия и производит воспламенение рабочей смеси, в другом цилиндре в это время избыточное давление отсутствует и выделенная в искре энергия расходуется вхолостую. Четырехвыводная катушка снабжена первичной обмоткой, состоящей из двух секций, работающих попеременно. Высоковольтные диоды обеспечивают разделение цепей, так как высоковольтные импульсы такой системы разнополярны. Это является недостатком системы с четырехвыводной катушкой, поскольку, в зависимости от полярности импульса, пробивное напряжение на свече может отличаться на 1,5 — 2 кВ. Катушка может обслуживать и один цилиндр, в этом случае она обычно располагается на свече.

В настоящее время наиболее распространено высоковольтное распределение зажигания, однако развитие электроники позволяет перейти, вернее вернуться, к низковольтному распределению, как, например, на первых автомобилях фирмы “Форд”, где имелись 4 прерывателя и 4 катушки зажигания.

При одинаковом принципе работы системы зажигания по своим конструктивным и схемным выполнениям делятся на контактную систему (иначе ее называют классической), контактно-транзисторную и бесконтактную электронные системы зажигания.

2. Контактная система зажигания

В контактной системе зажигания (рис. 8.4) коммутация в первичной цепи зажигания осуществляется механическим кулачковым прерывательным механизмом. Кулачок прерывателя связан с коленчатым валом двигателя через зубчатую или зубчато-ременную передачу, причем частота вращения вала кулачка вдвое меньше частоты вращения вала двигателя. Угол опережения зажигания устанавливается изменением положения кулачка относительно приводного вала или углового положения пластины прерывателя, на которой закреплена ось его подвижного рычажка. Время замкнутого и разомкнутого состояния контактов определяется конфигурацией кулачка, частотой вращения и зазором между контактами. Закономерность изменения угла опережения зажигания по частоте вращения коленчатого вала двигателя и его нагрузке различна для разных типов двигателя и подбирается экспериментально. Однако во всех случаях с увеличением частоты вращения коленчатого вала увеличивается скорость движения поршня, и для того, чтобы смесь успела сгореть при увеличении частоты вращения, угол опережения зажигания должен быть увеличен. Для изменения положения кулачка относительно приводного вала в зависимости от частоты вращения служит центробежный регулятор. Своеобразными датчиками частоты вращения в регуляторе являются грузики, оси вращения которых закреплены на пластине связанной с приводным валом.

Под действием центробежной силы, зависящей от частоты вращения, грузики стремится разойтись и повернуть траверсу, жестко связанную с кулачком, при этом центробежная сила преодолевает силу противодействующей пружины.

С увеличением нагрузки двигателя, т.е. с увеличением угла открытия дроссельной заслонки, наполнение цилиндров и давление в конце такта сжатия увеличивается, процесс сгорания ускоряется. Следовательно с увеличением открытия дроссельной заслонки угол должен уменьшаться. Изменение угла опережения зажигания по нагрузке двигателя осуществляет вакуумный регулятор (рис. 8.5, в). Вакуумная камера регулятора объединена со впускным коллектором двигателя за дроссельной заслонкой. При увеличении нагрузки дроссельная заслонка открывается, давление за ней снижается, и гибкая мембрана через шток поворачивает пластину с контактным механизмом относительно кулачка в сторону уменьшения угла опережения зажигания. Максимальный угол опережения зажигания по нагрузке также ограничивается упором и лежит в пределах 15-25° по углу поворота коленчатого вала. В реальной эксплуатации центробежный и вакуумный регуляторы работают совместно.

Если октановое число топлива не соответствует степени сжатия двигателя, то даже при оптимальной установке угла опережения зажигания, соответствующей максимальной мощности двигателя, в нем может возникнуть детонация — чрезвычайно быстрое сгорание рабочей смеси, подобное взрыву. Для предотвращения детонации служит октан-корректор, позволяющий вручную повернуть корпус прерывателя-распределителя в ту или другую сторону. При применении топлива с меньшим октановым числом корпус поворачивается в сторону уменьшения угла опережения зажигания.

Добавочный резистор R (рис. 8.4) устраняет влияние снижения напряжения в бортовой сети при включении стартера. Для этого он при пуске закорачивается, при нормальной работе на нем падает часть напряжения так, что к катушке зажигания подходит напряжение 7-8 В, на которое она рассчитана. Добавочный резистор выполняется из никелевой или константановой проволоки, имеет сопротивление 1-1,9 Ом и располагается либо на катушке зажигания, либо отдельно.

Изготовление добавочного резистора из никелевой проволоки позволяет ему выполнить дополнительные функции — защиту первичной цепи от перегрузки, возможной на малой частоте вращения коленчатого вала. Сопротивление никелевого резистора с ростом силы тока возрастает. Там, где напряжение при пуске понижается мало, добавочный резистор не применяется. Распределительный механизм, который объединен в один узел “прерыватель-распределитель” с прерывателем, подводит вывод вторичной обмотки катушки зажигания через контактный уголек к вращающемуся электроду (бегунку), установленному на одном валу с кулачком прерывателя. При вращении ротора высокое напряжение последовательно через воздушный промежуток, приблизительно в 0,5 мм, электроды распределителя и высоковольтные провода подается на свечи. Момент прохождения бегунка мимо каждого электрода распределителя синхронизирован с размыканием контактов прерывателя.

Оцените статью
Добавить комментарий

Adblock
detector