Как отливают блок цилиндров

Добрый день, Уважаемые гости и подписчики!

В очередной раз шарясь по просторам рунета в поисках информации по ДВС для модели наткнулся на статью и не смог пройти мимо. Думаю многим будет интересна информация по тематике строения, технологии и материалов. Да простит меня автор.

Блок цилиндров – основная и самая дорогостоящая часть двигателя. Именно в блоке расположены отверстия цилиндров, в которых перемещаются поршни и происходят все процессы сгорания, в результате которых вырабатывается энергия. Блок цилиндров так же является основой двигателя, к которой крепятся все остальные детали. К блоку цилиндров также крепятся различные вспомогательные механизмы двигателя и других систем автомобиля. Например, электрический генератор, насос системы гидроусилителя рулевого управления и компрессор кондиционера. К блоку цилиндров крепится картер сцепления или корпус гидротрансформатора автоматической коробки передач. В самом блоке цилиндров расположен коленчатый вал и другие детали кривошипно-шатунного механизма. В старых конструкциях двигателя, некоторые из них выпускаются и в настоящее время (в основном в Америке), в блоке цилиндров располагался и распределительный вал, а когда-то, совсем давно, и сами клапаны, вместе с клапанными механизмами, тоже располагались в блоке цилиндров. В таких, так называемых нижнееклапанных двигателях головка блока цилиндров была просто крышкой с единственными отверстиями для установки свечей зажигания.

1 Отверстие цилиндра
2 Сёдла впускных клапанов
3 Сёдла выпускных клапанов
4 Канал рубашки охлаждения
5 Отверстие для установки распределительного вала
6 Выпускной канал
7 Впускные каналы
8 Полость для установки клапанов и клапанных механизмов

Блок цилиндров нижнееклапанного двигателя легкового автомобиля Мерседес 30-х годов.
Не стоит думать, что это совсем древность, подобные нижнеклапанные двигатели выпускались в нашей стране до 90-х годов. Ранее они устанавливались на автомобили ГАЗ-51 и ГАЗ-52, а позднее они устанавливались на различные погрузчики и другие строительные машины.

Но в современных конструкциях распределительный вал (валы), клапаны, впускные и выпускные каналы расположены в головке блока цилиндров. Сверху блок цилиндров закрывается мощной головкой блока цилиндров, а снизу блок цилиндров закрывается поддоном системы смазки.

Конструкция блока цилиндров
Блок цилиндров большинства двигателей отливается из серого легированного чугуна и далее подвергается механической обработке. В таком случае рабочей поверхностью зеркала цилиндра является чугун отливки. Отверстие цилиндра растачивается под установленный размер, а после окончательной механической обработки поверхность стенок имеет микроструктуру, позволяющую удерживать необходимое количество масла. Чугун, особенно легированный, обладает необходимой прочностью и низким коэффициентом трения в паре материалов «чугун – чугун» или «сталь – чугун», из которых изготавливаются поршневые кольца, и в паре материалов «алюминий – чугун» из которого изготавливаются поршни. При этом чугунные стенки цилиндров обладают высокой износостойкостью. Но иногда даже в чугунные блоки цилиндров, для увеличения износостойкости запрессовываются тонкостенные сухие гильзы из более износостойкого легированного чугуна.
Недостатком чугуна при производстве блока цилиндров является его большой удельный вес. Для улучшения динамики автомобиля конструкторы всеми силами стараются уменьшить вес всех компонентов автомобиля, включая двигатель. Поэтому блок цилиндров двигателя многих современных автомобилей отливается из алюминиевого сплава. Алюминий, кроме малого веса не имеет никаких преимуществ перед чугуном, но при этом появляются новые трудности. Алюминиевые сплавы гораздо мягче чугуна, поэтому для обеспечения необходимой жёсткости блока приходится делать более толстыми несущие стенки блока и делать сложную систему рёбер жёсткости. Алюминий имеет более высокий коэффициент температурного расширения, поэтому приходится более строго контролировать зазоры между различными деталями двигателя. Поршни всех современных двигателей, для облегчения веса, изготавливаются чаще всего из алюминиевых сплавов. Но коэффициент трения в паре материалов «алюминий – алюминий» очень большой и алюминий обладает низкой износостойкостью. Поэтому поверхность цилиндров должна быть изготовлена не из алюминия, а из другого материала. В алюминиевых блоках тонкостенные чугунные гильзы из износостойкого чугуна вплавляются в алюминиевую отливку при изготовлении отливки блока. Но стенки цилиндров самых современных двигателей с алюминиевым блоком при помощи современных технологий могут быть покрыты гальваническим способом специальным износостойким металлом. Или при помощи самых современных технологий осуществляется поверхностное упрочнение стенок цилиндров. При отливке блока цилиндров специальные технологии повышают концентрацию кремния в поверхностном слое стенок цилиндров, далее при помощи химических реакций из поверхностного слоя стенок цилиндров удаляется алюминий. В результате этого упрочнения износостойкость стенок цилиндров превышает по этому показателю цилиндры, изготовленные из чугуна. Но в этом случае, для снижения коэффициента трения между алюминиевым блоком цилиндров и алюминиевыми поршнями, поршни покрываются тонким слоем железа. Отсутствие чугунных гильз значительно уменьшается вес блока цилиндров.
Иногда в блок цилиндров вставляются съёмные гильзы, которые герметизируются в блоке цилиндров при помощи медных или резиновых прокладок. Съёмные гильзы имеют преимущество в том, что после предельного износа их можно заменить новыми, изготовленными или отремонтированными (расточенными под ремонтный размер) с высокой точностью в заводских условиях. Применение съёмных гильз упрощает ремонта двигателя. Но в последнее время такие гильзы применяются довольно редко, поскольку блоки цилиндров со вставными гильзами имеют некоторые, присущие им недостатки. При перегреве двигателя происходит разгерметизация посадки гильзы в блоке, в результате которой происходит утечка охлаждающей жидкости.

Гильзы, непосредственно омываемые охлаждающей жидкостью, называются мокрыми. Гильзы, запрессованные в материал отливки блока, и не соприкасающиеся непосредственно с охлаждающей жидкостью называются сухими.
Во время отливки в блоке цилиндров изготавливаются каналы для прохода охлаждающей жидкости, омывающей гильзы цилиндров. Система таких каналов называется рубашкой охлаждения. Так же в блоке цилиндров методом сверления делаются масляные каналы, чаще называемые масляными магистралями, по которым масло от насоса системы смазки поступает ко всем трущимся деталям двигателя. Выходные отверстия сверлений масляных магистралей на наружной поверхности блока цилиндров имеют резьбовые заглушки или герметизируются другими способами.
При конструировании и изготовлении блока цилиндров конструкторам и технологам приходится постоянно находить компромисс между прочностью и весом блока цилиндров. Для снижения веса, без уменьшения прочности блок часто имеет множество рёбер жёсткости, особенно этим отличаются блоки цилиндров японских автомобилей.
Во время работы двигателя блок цилиндров подвергается значительным температурным и механическим нагрузкам. Давление расширяющихся рабочих газов давит на поршень и верхнюю стенку камеры сгорания, расположенную в головке блока цилиндров. От головки блока цилиндров, через элементы её крепления (болты или шпильки) усилие передаётся на блок цилиндров. А усилие от поршня, через детали кривошипно-шатунного механизма и постели подшипников коленчатого вала передаются на блок цилиндров с другой стороны. В результате воздействия этих противоположно направленных сил в блоке цилиндров возникают большие растягивающие напряжения. Блок цилиндров также испытывает изгибающие усилия.
Блок, не обладающий необходимой прочностью, не только деформируется сам, но и деформирует такие дорогие детали двигателя как коленчатый или распределительный валы.
Основной неисправностью блока цилиндров является износ стенок цилиндров, вызванный продолжительной эксплуатацией двигателя, то есть большим пробегом автомобиля.
Капитальный ремонт двигателей легковых автомобилей с расточкой и последующей хонинговкой цилиндров сейчас массово не производится. Хотя все отечественные заводы выпускают в запасные части поршни и поршневые кольца трёх ремонтных размеров, что позволяет приводить расточку отверстий цилиндров несколько раз.
Причин тут много и экономических, и технических и, особенно организационных. Если бы у нас, как во многих странах мира, в учётных документах на автомобиль заносился только VIN-код автомобиля, без указания номера двигателя, то, вполне возможно, появилась организационная возможность и экономическая целесообразность, создания высокотехнологичных предприятий по капитальному ремонту двигателей отечественных автомобилей. Возможно, это не очень выгодно автопрому, но, вполне вероятно было бы выгодно массе потребителей.
Номер двигателя выбивается на поверхности блока цилиндров.

Читайте также:  Газель некст загорелся оранжевый чек

У американцев капитальный ремонт их огромных двигателей V8 или V10 широко развит. Для этого у них существуют специальные авторемонтные заводы с дорогими точными станками, точным мерительным инструментом и квалифицированным персоналом. Причём довольно часто на капитально отремонтированный двигатель даётся гарантия, превышающая гарантию на новый двигатель того же производителя.
Капитальный ремонт двигателей массовых легковых автомобилей в Европе, также как и в нашей стране массово отсутствует. Большая конкуренция на автомобильном рынке и высокая надёжность современных двигателей, привели к тому, что стало легче заменить весь автомобиль, чем ремонтировать двигатель. Если с Европой всё ясно, то насколько верна эта политика в нашей стране, для меня, точного ответа нет.

Но капитальный ремонт двигателей грузовых автомобилей, сельскохозяйственных и дорогих строительных машин производится, поскольку это экономически оправдано. Новый двигатель импортного бульдозера или экскаватора может стоить так дорого, что оправдывает капитальный ремонт любой сложности и стоимости.
Также возникает потребность в капитальном ремонте двигателя с гильзовкой, расточкой, хонинговкой и фрезеровкой поверхности головки блока цилиндров при реставрации старинных и уникальных автомобилей.
Выполнить капитальный ремонт с механической обработкой блока цилиндров и некоторых других основных деталей двигателя, например, коленчатого вала или головки блока цилиндров, в условиях небольших и даже средних сервисных предприятий с необходимым качеством практически невозможно. Гарантированное качество капитального ремонта двигателя можно обеспечить только в условиях узко специализированного на такие виды ремонта предприятиях, укомплектованные точными специализированными станками, мерительным инструментом и квалифицированными кадрами.
В наших условиях, особенно при капитальном ремонте двигателя на небольших сервисных предприятиях, когда механическая обработка блока цилиндров и коленчатого вала производится в сторонних организациях, срок службы капитально отремонтированного двигателя не превышает одной трети от ресурса нового двигателя. Поэтому, с учётом стоимости ремонта и вероятной стоимости каждой тысячи километров пробега отремонтированного двигателя, возможно, дешевле купить новый двигатель. Разумеется, если автомобиль не готовится к продаже.

Крышки коренных подшипников коленчатого вала

Ранее указывалось, что блок цилиндров является основой сборки двигателя. Внутри блока цилиндров расположены кривошипно-шатунный и газораспределительный механизмы, впрочем, газораспределительный механизм современного двигателя почти полностью расположен в головке блока цилиндров, а снаружи к блоку цилиндров крепятся различные вспомогательные механизмы. Но что объединяет все эти компоненты двигателя – их, в случае выявленной неисправности, во время ремонта можно заменить. Но в блоке цилиндров есть детали, которые ни при каких условиях заменять нельзя – это крышки коренных подшипников коленчатого вала. На заводе-изготовителе окончательная механическая обработка отверстий подшипников коленчатого вала производится за один проход режущего инструмента при установленных крышках коренных подшипников. Зазор и соосность в коренном подшипнике устанавливается с высокой точностью, поэтому никогда, ни при каких условиях не допускается установка на блок цилиндров крышек коренных подшипников от другого блока цилиндров. Также не допускается перестановка местами крышек одного блока, или установка крышек в другом направлении.
Условно крышки коренных подшипников можно разделить на три группы. К первой можно отнести индивидуальные крышки коренных подшипников. В этом случае каждый коренной подшипник имеет свою индивидуальную крышку. Например, стандартный рядный четырёхцилиндровый двигатель имеет пять коренных подшипников и каждый коренной подшипник имеет свою индивидуальную крышку. Большая часть автомобильных двигателей, и не только рядных четырёхцилиндровых, устроена именно по такому принципу.

Обзор: литейные формы и соответствующие литейные процессы

Стальные кокили с песчаными стержнями

Стальные кокили Стальные формы

Свободная заливка форм

Литьё под низким давлением

Литье под давлением

Прессование (Squeeze Casting)

В таблице помещён небольшой обзор применяемых для алюминиевого литья литейных процессов и соответствующих литейных форм. В нижеследующих подразделах описываются определённые литейные процессы, а также поясняются их преимущества и недостатки.

Литьё в песчаные формы

Литьё в песчаные формы является традиционной технологией литья в формы с разрушаемыми (теряемыми) песчаными формами. Формы, применяемые для одной единственной отливки, изготавливаются, в принципе, из кварцевого песка как основного материала формы с применением связующих средств. Изготовление форм производится копированием моделей из дерева, металла или пластмассы и позволяет получать отливки сложной формы путём разъёма и разделения модели и формы. После застывания отливок песчаные формы разрушаются, а песчаные стержни, служащие для достижения недоступных и необрабатываемых полостей, вытряхиваются или вымываются. Обычно применяемое литьё в песчаные формы играет в серийном производстве второстепенную роль. Главная область применения — изготовление прототипов и малых серий. Экономично литьё в песчаные формы в форме автоматизированного метода стержневого пакета (CPS = core package system). Чистый процесс литья в песчаные формы (форма и стержни изготовлены из песка) производится методом свободной заливки форм или методом литья под низким давлением. На Изображении 1 показано литьё в песчаные формы методом свободной заливки форм.

1. Разливочный ковш

3. Песчаная форма

Литьё в кокиль

При литье в кокиль жидкий алюминий разливается в долговременные металлические формы из чугуна или жароупорных сталей. При данном методе литья конструкция и свобода её конструирования зависят, однако, от того, производится ли отливка методом свободной заливки форм или методом литья под низким давлением. По сравнению с литьём в песчаные формы при литье в кокиль достигается лучшее качество поверхности и большая точность размеров отливок

Читайте также:  Как узнать какой двигатель на гранте

Свободное литьё в кокиль

При свободном литье в кокиль заполнение формы происходит исключительно под влиянием действующей на металл силы тяжести при атмосферном давлении. Отливка производится вручную или на частично или полностью автоматизированных литейных машинах. При данном методе существует достаточно большая свобода конструирования, поскольку возможно применение песчаных стержней (изобр. 3). Таким образом, реализуемы также разрезы сзади или полости, недостижимые механообработкой. Благодаря быстрому, направленному застыванию расплава при методе свободного литья в кокиль по сравнению с литьём в песчаные формы достигается более тонкая структура, более высокая прочность, а также неограниченные возможности по работе с теплом.

1. Разливочный ковш

5. Литниковая система

6. Песчаный стержень

Литьё в кокиль под низким давлением

При литье под низким давлением расплав при относительно низком избыточном давлении (для алюминиевых сплавов — от 0,2 до 0,5 бар) поднимается в кокиль и при этом давлении застывает Речь идёт, — если речь идёт о давлении, — собственно, о давлении заполнения, необходимом для того, чтобы жидкий металл доставить в литейной машине наверх, в форму. Давление заполнения поддерживается до тех пор, пока не произойдёт затвердевание, от самого удалённого места до среза сифонного литника (входное отверстие литейной формы). Тем самым почти идеально происходящее, направленное затвердевание и заполнение формы без турбулентности являются существенным основанием высокой ценности отливок под низким давлением. Как и при свободном литье в кокиль, и при данном методе применимы стержни из песка, дающие в достаточной степени простор для конструирования формы.

2. Стальной кокиль

3. Сифонный литник

4. Литейная печь с расплавом

5. Подъёмный стол

6. Подъёмное приспособление

Литьё под давлением

При литье под давлением расплав под высоким давлением и с большой скоростью впрыскивается в долговременные формы из улучшенной жаропрочной стали. Металл течёт под давлением в полости формы. В конце заполнения формы давление на жидкий металл возрастает до 700 — 1000 бар. Давление поддерживается в процессе затвердевания металла. Это позволяет получить самую точную передачу формы по сравнению с другими методами литья. Тем самым достижимы узкие поля допусков размеров, резкость контуров и качество поверхности с малыми припусками на обработку. Благодаря высокому съёму продукции с квадратного метра площади речь идёт об очень экономичном методе литья. Этот метод имеет, однако, также определённые недостатки. Так, увеличивающая прочность двойная термообработка, в общем, невозможна, поскольку заключённые в материале пузырьки воздуха или газовые поры, образующиеся из-за толчкообразного наполнения формы, при определённых условиях создадут трудности. Также следует назвать ещё имеющуюся в настоящее время ограниченную свободу конструирования, поскольку при литье под давлением не могут быть применены для литейных полостей никакие обычно применяемые песчаные стержни. Обычно применяемые песчаные стержни были бы разрушены высоким давлением литья и сделали бы отливку непригодной. Однако происходит дальнейшее развитие литейной технологии. В настоящее время разрабатываются такие песчаные стержни, которые могут выдерживать высокое давление литья в процессе литья под давлением.

1. Разливочный ковш

2. Отверстие заполнения

3. Поршень прессования

4. Камера прессования

6. Стальная форма

Прессование (Squeeze Casting)

Речь идёт, в принципе, о литье под давлением с несколько иными преимуществами и недостатками. Конструкция литейной машины, однако, отличается. Создание давления при прессовании происходит в конце процесса заполнения формы, который идёт значительно медленнее, чем при литье под давлением. Расплав, в отличие от литья под давлением, выдавливается в форму не в течение нескольких миллисекунд; процесс литья длится значительно дольше, до нескольких секунд. Это особенно важно при заливке чувствительных заливаемых частей, таких, как, напр. Silizium Preforms (LOKASIL метод) или усиления волокном постели под подшипники. Впрыск расплава, как это делается при литье под давлением, повредил или разрушил бы эти чувствительные части, сделав данную отливку негодной. Благодаря отсутствию турбулентности при заполнении формы прессованные части полностью термообрабатываемы для увеличения прочности.

Изобретение относится к литью в металлические формы. При отливке блока цилиндров двигателей внутреннего сгорания гильзы перед установкой их в форму нагревают. В процессе заливки сплава в форму знаковые части песчаных стержней через вентиляционные каналы в металлических матрицах формы подсоединяют к вакуумной системе. Гильзы имеют кольцевые уплотняющие буртики на внешней боковой поверхности. Торцевые поверхности буртиков выполнены как плоскими, так и в виде усеченных конусов, обращенных большими основаниями в сторону торца гильзы, у которого они расположены. Нагрев гильз до температуры, меньшей температуры начала изменений микроструктуры материала гильз, но большей температуры кристаллизации материала отливки, обеспечивает плотный контакт гильз с телом отливки. Наличие буртиков на гильзе приводит к обжатию их сплавом отливки, что обеспечивает герметичность рубашки охлаждения блока цилиндров. 2 с. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к области литья в металлические формы деталей из алюминиевых сплавов, в частности блоков цилиндров ДВС с залитыми чугунными гильзами, а также к конструкциям указанных гильз цилиндров.

Известны блоки цилиндров ДВС, отлитые из алюминиевых сплавов с залитыми в тело блока чугунными гильзами цилиндров, выполненные методом литья под давлением (ЛПД) [1,2].

Этот способ получения отливок блока экономически целесообразен лишь при производстве ДВС с малым рабочим объемом цилиндров (менее 2,0 л) и относительно небольшой массе отливки, т. к. стоимость литейного оборудования напрямую зависит от массы отливки. Кроме того, технология ЛПД дает возможность получения блоков только с открытой верхней плоскостью (open deck) [3], что затрудняет применение блоков такой конструкции на ДВС c рабочим объемом более 2,0 л.

Известны также отливки блоков цилиндров, получаемые методом гравитационного литья в металлические формы с применением песчаных стержней [1].

В отличие от способа получения отливок ЛПД этот способ не требует применения дорогих и сложных литейных машин, позволяет получать крупногабаритные отливки с массой в несколько десятков килограммов, а также дает возможность конструктивно выполнять такие отливки с закрытой верхней плоскостью (closed deck), что значительно повышает жесткость верхнего пояса блока цилиндров и позволяет более надежно уплотнить газовый стык между блоком и головкой. В то же время при выполнении отливок блоков указанным способом возникают серьезные проблемы по обеспечению плотности и герметичности стенок водяной рубашки, надежности контакта гильз с материалом блока в случае, например, необходимости изготовления отливок с водяными протоками между заливаемыми гильзами, т. к. в таком случае толщина стенок отливки около чугунных гильз может составлять всего 3-3,5 мм.

Известно, что для создания плотного слоя алюминиевого сплава вокруг наружной поверхности гильз, гильзы перед установкой в формы в ряде случаев предварительно нагревают, например, до температуры около 200 o C [2].

Для достижения надежности посадки гильз в тело блока также используется рифление наружной поверхности гильз кольцевыми канавками [2].

При гравитационном способе получения отливок блока с протоками между гильзами упомянутые выше условия посадки гильз в тело блока не гарантируют герметичность водяной рубашки, т.к. при малой толщине стенок отливки в межгильзовом пространстве (как уже указывалось ранее — не более 3,5 мм) не обеспечивается их плотность. В связи с этим может возникать сообщение полости водяной рубашки с атмосферой через поры и неспаи упомянутых стенок, неплотности в пограничном слое между наружной поверхностью гильз и окружающими их стенками водяной рубашки с выходом к торцам гильз.

Опыт освоения промышленного производства отливок блока цилиндров автомобильного 4-цилиндрового ДВС с рабочим объемом цилиндров 2,9 л методом гравитационного литья (масса отливки около 30 кг) показал, что известные приемы обеспечения надежного контакта гильз с телом блока и получения герметичности полости водяной рубашки не дают положительных результатов.

Задачей настоящего изобретения является создание отливки блока цилиндров ДВС и способа ее получения, при котором улучшается контакт залитых чугунных гильз с телом блока и повышается плотность стенок отливки, за счет чего обеспечивается герметичность водяной рубашки блока.

Предлагаемое изобретение решает эту задачу следующим образом. На боковой поверхности гильзы у обоих ее торцев выполнены кольцевые буртики, что обеспечивает обжатие и уплотнение стыка между телом блока и гильзой по внешним торцевым поверхностям буртиков при остывании сплава. Буртики могут выполняться как с плоскими торцевыми поверхностями, так и с торцевыми поверхностями в виде усеченных конусов, большие основания которых обращены к ближнему торцу гильзы. Перед установкой гильз в форму их нагревают до температуры, меньшей, чем температура начала изменений в микроструктуре материала гильзы на 100-120 o C, но большей, чем температура кристаллизации материала отливки на 20-30 o C, а знаковые части песчаных стержней, образующих водяную рубашку блока, через вентиляционные каналы в металлических матрицах формы подсоединяют к вакуумной системе в процессе заливки и кристаллизации металла в форме.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображен продольный разрез отливки блока цилиндров до извлечения ее из формы и выбивки песчаных стержней. Отливка изображена в том положении, в котором ведется заполнение формы расплавом. Литниковая система не показана.

На фиг.2 изображен поперечный разрез этой отливки.

На фиг. 3 и фиг. 4 изображены гильзы с различными вариантами выполнения кольцевых буртиков на наружной боковой поверхности.

Форма состоит из боковых матриц 1 и 2 и торцевых матриц 3 и 4, верхнего металлического стержня 5 и нижней плиты 6. На металлических стержнях 7, закрепленных на нижней плите 6, установлены чугунные гильзы 8 с кольцевыми уплотняющими буртиками 9 и 10. В зоне установки гильз размещен песчаный стержень 11 водяной рубашки блока, имеющий несколько знаковых частей 12 с выходом в вентиляционные каналы 13 металлических матриц 1, 2, 3, 4.

Гильзы перед установкой подогреваются до температуры приблизительно 600 o C, которая выбрана исходя из следующих условий.

Увеличение температуры подогрева гильз перед их установкой в форму, например, до температуры заливаемого сплава (700-720 o C) позволяет значительно улучшить заполнение сплавом межгильзовых пространств и повысить плотность стенок отливки, прилегающих к гильзам, в особенности, где толщина стенок минимальная.

Однако при этом происходит недопустимое снижение твердости материала гильз из-за начала изменений в микроструктуре чугуна, в частности в связи с появлением зернистого перлита.

Если снизить температуру предварительного подогрева гильз на 100-120 o , то изменений в микроструктуре чугуна не происходит, твердость гильз практически не меняется, в то же время проливаемость и плотность стенок отливки, в том числе и в межгильзовом пространстве, получается удовлетворительной, т. к. температура гильз остается на 20-30 o выше температуры кристаллизации сплава, которая составляет 570-580 o C, что обеспечивает сохранение жидкотекучести расплава при заполнении полостей вокруг гильз цилиндров.

При заливке жидкий алюминиевый сплав подается в металлическую форму одновременно сверху и снизу, образуя отливку 14 блока цилиндров.

С началом подачи расплава включается вакуумная система, которая через вентиляционные каналы 13 в металлических матрицах формы через знаковые части 12 песчаного стержня 11 отсасывает газы, образующиеся при выгорании стержневой смеси, благодаря чему улучшается проливаемость стенок отливки в межгильзовом пространстве.

После кристаллизации и остывания расплава вследствие различия коэффициентов линейного расширения чугуна и алюминиевого сплава происходит обжатие гильз как по наружной боковой поверхности, так и по торцам материалом тела отливки благодаря наличию у обоих торцев гильз кольцевых уплотняющих буртиков.

Источники информации 1. Смоль Г. И. Американские легковые автомобили (обзор). — М.: ЦНТИ, 1961, с. 23-33.

2. Конструкция малолитражных двигателей. Сборник статей. — М.: Машиностроение, 1969, с. 98-100.

3. Автомобильная промышленность США. 1993, N 4, с. 18-23.

1. Отливка блока цилиндров двигателя внутреннего сгорания из алюминиевого сплава, содержащая залитые чугунные гильзы с кольцевыми уплотняющими буртиками, расположенными на внешней боковой поверхности гильз у обоих торцов, отличающаяся тем, что торцевые поверхности буртиков выполнены как плоскими, так и в виде усеченных конусов, обращенных большими основаниями в сторону торца гильзы, у которого они расположены.

2. Способ получения отливки блока цилиндров двигателя внутреннего сгорания из алюминиевого сплава методом гравитационного литья в металлические формы с песчаными стержнями для образования водяной рубашки блока, имеющими знаковые части, включающий предварительный нагрев установленных в форму чугунных гильз перед заливкой сплава, отличающийся тем, что гильзы нагревают до температуры, меньшей температуры начала изменений микроструктуры материала гильз, но большей температуры кристаллизации материала отливки.

3. Способ по п.2, отличающийся тем, что знаковые части песчаных стержней подсоединяют к вакуумной системе в процессе заливки сплава в форму через вентиляционные каналы в металлической форме.

Оцените статью
Добавить комментарий

Adblock
detector